ますただ
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
13奈良県教員採用試験(数学:1-3番 2変数の極限)
単元:
#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣-(3)
$\displaystyle \lim_{ (x,y) \to (0,0) } \frac{2x^3-y^3+x^2+y^2}{x^2+y^2}$
この動画を見る
1⃣-(3)
$\displaystyle \lim_{ (x,y) \to (0,0) } \frac{2x^3-y^3+x^2+y^2}{x^2+y^2}$
17奈良県教員採用試験(数学:高校4番 微分・式変形)
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
4⃣ $f(x)=x^3-3x^2+6$
異なる2点A(α,f(α)),B(β,f(β))上の接線は平行
(1)βをαで表せ
(2)直線ABをαを用いて表せ
(3)直線ABは定点を通ることを示せ
この動画を見る
4⃣ $f(x)=x^3-3x^2+6$
異なる2点A(α,f(α)),B(β,f(β))上の接線は平行
(1)βをαで表せ
(2)直線ABをαを用いて表せ
(3)直線ABは定点を通ることを示せ
15奈良県教員採用試験(数学:高校3番 軌跡)
単元:
#数Ⅱ#図形と方程式#軌跡と領域#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
3⃣ P(0,a),$y=\frac{x^2}{a}$上の点をQ,
PQは最小値をとる(a≠0)
(1)Qの座標を求めよ。
(2)Qの軌跡を求めよ。
この動画を見る
3⃣ P(0,a),$y=\frac{x^2}{a}$上の点をQ,
PQは最小値をとる(a≠0)
(1)Qの座標を求めよ。
(2)Qの軌跡を求めよ。
15奈良県教員採用試験(数学:3番 式変形)
14奈良県教員採用試験(数学:2番 式変形)
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
2⃣x=1-y-z
$x^2=1+yz$
(1)$x^3+y^3+z^3$をxで表せ
(2)xの範囲を求めよ。
(3)$x^3+y^3+z^3$の最大値を求めよ。
この動画を見る
2⃣x=1-y-z
$x^2=1+yz$
(1)$x^3+y^3+z^3$をxで表せ
(2)xの範囲を求めよ。
(3)$x^3+y^3+z^3$の最大値を求めよ。
17神奈川県教員採用試験(数学:13番 y軸回転体)
単元:
#積分とその応用#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{13}$
$y=\frac{1}{2}x^2-x$とx軸で囲まれた領域をy軸を中心としてできる回転体の体積を求めよ。
この動画を見る
$\boxed{13}$
$y=\frac{1}{2}x^2-x$とx軸で囲まれた領域をy軸を中心としてできる回転体の体積を求めよ。
16神奈川県教員採用試験(数学:整数問題)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
2⃣$n \leqq 300$,nの約数の個数が9個となる$n \in \mathbb{ N }$を求めよ。
この動画を見る
2⃣$n \leqq 300$,nの約数の個数が9個となる$n \in \mathbb{ N }$を求めよ。
19奈良県教員採用試験(数学:高校1番 微分)
単元:
#微分とその応用#微分法#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
高1⃣類題
$f(x)=x \quad sinx がx=aで微分可能を示せ$
この動画を見る
高1⃣類題
$f(x)=x \quad sinx がx=aで微分可能を示せ$
17神奈川県教員採用試験(数学:1番 式変形)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣$x=\frac{3+\sqrt{13}}{2}$のとき
$x^3-\frac{1}{x^3}$を求めよ。
この動画を見る
1⃣$x=\frac{3+\sqrt{13}}{2}$のとき
$x^3-\frac{1}{x^3}$を求めよ。
19奈良県教員採用試験(数学:3番 数列)
単元:
#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
3⃣$S_n=3n^2+4n$
(1)$a_n$
(2)$a_{2018}+a_{2019}+a_{2020}$
(3)$\displaystyle \sum_{k=1}^n a_k a_{k+1}$
この動画を見る
3⃣$S_n=3n^2+4n$
(1)$a_n$
(2)$a_{2018}+a_{2019}+a_{2020}$
(3)$\displaystyle \sum_{k=1}^n a_k a_{k+1}$
18神奈川県教員採用試験(数学:11番 区分求積法)
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\fbox{ 11 }$
$\displaystyle \lim_{ n \to \infty } \frac{1}{n}(\sqrt{\frac{n+1}{n}} +\sqrt{\frac{n+2}{n}} + \cdots +\sqrt{\frac{n+n}{n}})$
この動画を見る
$\fbox{ 11 }$
$\displaystyle \lim_{ n \to \infty } \frac{1}{n}(\sqrt{\frac{n+1}{n}} +\sqrt{\frac{n+2}{n}} + \cdots +\sqrt{\frac{n+n}{n}})$
19神奈川県教員採用試験(数学:6番 剰余の定理)
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
6⃣
P(x)をx+1,$(x-1)^2$で割った余りは、-3,-3x+6
P(x)を$(x+1)(x-1)^2$で割った余りを求めよ。
この動画を見る
6⃣
P(x)をx+1,$(x-1)^2$で割った余りは、-3,-3x+6
P(x)を$(x+1)(x-1)^2$で割った余りを求めよ。
18神奈川県教員採用試験(数学:5番 式変形)
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
5⃣
$x=3- \sqrt 2$
$x^4-6x^3+10x^2-13x+9$の値を求めよ。
この動画を見る
5⃣
$x=3- \sqrt 2$
$x^4-6x^3+10x^2-13x+9$の値を求めよ。
19神奈川県教員採用試験(数学:5番 三角関数)
単元:
#数Ⅱ#三角関数#加法定理とその応用#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
5⃣
tanα=2,tanβ=4,tan(α+β+γ)=1のときtanγを求めよ。
この動画を見る
5⃣
tanα=2,tanβ=4,tan(α+β+γ)=1のときtanγを求めよ。
16奈良県教員採用試験(数学:高校5番 y軸回転体)
単元:
#微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
5⃣ $l:y=x \sqrt{1-x^2}$ $(0 \leqq x \leqq 1)$
(1)極値、グラフ
(2)l、x軸で囲まれた図形をy軸を中心にした回転体の体積V
この動画を見る
5⃣ $l:y=x \sqrt{1-x^2}$ $(0 \leqq x \leqq 1)$
(1)極値、グラフ
(2)l、x軸で囲まれた図形をy軸を中心にした回転体の体積V
16東京都教員採用試験(数学:3番 微積)
単元:
#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
3⃣$C_1 : y=ax^2,C_2:y=logx$
$C_1$と$C_2$は共通に接線lをもつ
(1)定数aの値
(2)接線lの方程式
(3)$C_1$,l,y軸で囲まれた面積S
この動画を見る
3⃣$C_1 : y=ax^2,C_2:y=logx$
$C_1$と$C_2$は共通に接線lをもつ
(1)定数aの値
(2)接線lの方程式
(3)$C_1$,l,y軸で囲まれた面積S
14兵庫県教員採用試験(数学:1-2番 因数分解)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣-(2)
$(a+b+c)^3 -a^3-b^3-c^3$を因数分解せよ。
この動画を見る
1⃣-(2)
$(a+b+c)^3 -a^3-b^3-c^3$を因数分解せよ。
14兵庫県教員採用試験(数学:1-5番 解と係数の関係)
単元:
#数Ⅰ#数Ⅱ#複素数と方程式#図形と計量#三角比(三角比・拡張・相互関係・単位円)#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣-(5)
$8x^2+kx-3=0,x=sinθ,cosθ$のときkの値を求めよ。
この動画を見る
1⃣-(5)
$8x^2+kx-3=0,x=sinθ,cosθ$のときkの値を求めよ。
14兵庫県教員採用試験(数学:1-1番 整数問題)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣-(1)
$2^{2x}-3^{2y} =55$を満たす、$x,y \in \mathbb{ Z }$を求めよ。
この動画を見る
1⃣-(1)
$2^{2x}-3^{2y} =55$を満たす、$x,y \in \mathbb{ Z }$を求めよ。
16大阪府教員採用試験(数学:1-3番 ベクトル)
単元:
#空間ベクトル#その他#数学(高校生)#数C#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣-(6)
A(3,-4,5)の平面α:x+2y+z-10=0に関する対称点A'の座標を求めよ。
この動画を見る
1⃣-(6)
A(3,-4,5)の平面α:x+2y+z-10=0に関する対称点A'の座標を求めよ。
19大阪府教員採用試験(数学:2-6番 軌跡)
単元:
#数Ⅱ#図形と方程式#軌跡と領域#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
2⃣-(6)
$y=3x+1,y=-\frac{1}{3}x+2$のなす角の二等分線の直線の方程式を求めよ。
この動画を見る
2⃣-(6)
$y=3x+1,y=-\frac{1}{3}x+2$のなす角の二等分線の直線の方程式を求めよ。
16東京都教員採用試験(数学:1-5番 行列)
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣-(5)
$\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a^3 & 2a \\
1-a & 1
\end{array}
\right)
\end{eqnarray}
, \quad a \in \mathbb{ R }$
$A^{-1}$が存在しないとき、aの値を求めよ。
この動画を見る
1⃣-(5)
$\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a^3 & 2a \\
1-a & 1
\end{array}
\right)
\end{eqnarray}
, \quad a \in \mathbb{ R }$
$A^{-1}$が存在しないとき、aの値を求めよ。
20年5月数学検定1級1次試験(微分)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$x=\sin\theta$
$y=-1\log\tan\dfrac{\theta}{2}-\cos\theta$
$\theta=\dfrac{\pi}{3}$における$\dfrac{d^2y}{dx^2}$を求めよ.
20年5月数学検定1級1次試験(微分)過去問
この動画を見る
$\boxed{6}$
$x=\sin\theta$
$y=-1\log\tan\dfrac{\theta}{2}-\cos\theta$
$\theta=\dfrac{\pi}{3}$における$\dfrac{d^2y}{dx^2}$を求めよ.
20年5月数学検定1級1次試験(微分)過去問
20年5月数学検定1級1次試験(四面体の体積)
単元:
#数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
4点$A(1,-4,1),B(2,2,2),C(2,-6,-3),D(3,-2,-1)$とする.
四面体$ABCD$の体積$V$を求めよ.
$a=\left(\begin{eqnarray}
a_1 \\\
a_2 \\\
a_3
\end{eqnarray}\right)$
$a=\left(\begin{eqnarray}
b_1 \\\
b_2 \\\
b_3
\end{eqnarray}\right)$
$a=\left(\begin{eqnarray}
c_1 \\\
c_2 \\\
c_3
\end{eqnarray}\right)$
20年5月数学検定1級1次試験(四面体の体積)過去問
この動画を見る
$\boxed{3}$
4点$A(1,-4,1),B(2,2,2),C(2,-6,-3),D(3,-2,-1)$とする.
四面体$ABCD$の体積$V$を求めよ.
$a=\left(\begin{eqnarray}
a_1 \\\
a_2 \\\
a_3
\end{eqnarray}\right)$
$a=\left(\begin{eqnarray}
b_1 \\\
b_2 \\\
b_3
\end{eqnarray}\right)$
$a=\left(\begin{eqnarray}
c_1 \\\
c_2 \\\
c_3
\end{eqnarray}\right)$
20年5月数学検定1級1次試験(四面体の体積)過去問
20年5月数学検定1級1次試験(三角関数)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$
$\tan(2Arc\tan\dfrac{1}{3}+Arc\tan\dfrac{1}{12})$
$Arc\tan a=\tan^{-1}a=t\Leftrightarrow t=\tan a$
$\tan(\tan^{-1}a)=a$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$
20年5月数学検定1級1次試験(三角関数)過去問
この動画を見る
$\boxed{2}$
$\tan(2Arc\tan\dfrac{1}{3}+Arc\tan\dfrac{1}{12})$
$Arc\tan a=\tan^{-1}a=t\Leftrightarrow t=\tan a$
$\tan(\tan^{-1}a)=a$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$
20年5月数学検定1級1次試験(三角関数)過去問
18大阪府教員採用試験(数学:整数)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#その他
指導講師:
ますただ
問題文全文(内容文):
$2018$
$x\gt 0$の小数部分を$b$とし,$x^2+b^2=40$を満たす.
このとき,$b$の範囲と$x$の値を求めよ.
18大阪府教員採用試験(数学:整数)過去問
この動画を見る
$2018$
$x\gt 0$の小数部分を$b$とし,$x^2+b^2=40$を満たす.
このとき,$b$の範囲と$x$の値を求めよ.
18大阪府教員採用試験(数学:整数)過去問
20年5月数学検定1級1次試験(合同式)
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}$
$2018n \equiv 2(mod 1000)$をみたす最小の自然数$n$を求めよ.
20年5月数学検定1級1次試験(合同式)過去問
この動画を見る
$\boxed{1}$
$2018n \equiv 2(mod 1000)$をみたす最小の自然数$n$を求めよ.
20年5月数学検定1級1次試験(合同式)過去問
20年5月数検準1級1次試験(楕円)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.
20年5月数検準1級1次試験(楕円)過去問
この動画を見る
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.
20年5月数検準1級1次試験(楕円)過去問
20年5月数検準1級1次試験(極限)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.
20年5月数検準1級1次試験(極限)過去問
この動画を見る
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.
20年5月数検準1級1次試験(極限)過去問
20年5月数学検定準1級1次試験(複素数)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
この動画を見る
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問