理数個別チャンネル
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用2)
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin x}{x^0}$
この動画を見る
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin x}{x^0}$
【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用1)
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}x\sin・\dfrac{1}{x}$
この動画を見る
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}x\sin・\dfrac{1}{x}$
【数Ⅲ】積分法の応用:~授業風景シリーズ~ 回転体の体積 後編
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#チャート式#青チャートⅢ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
$y=\sin2x, y=\cos2x\left(\dfrac{\pi}{8}\leqq x\leqq\dfrac{5\pi}{8}\right)$で囲まれた部分をx軸の周りに回転して出来る立体の体積を求めよ。
この動画を見る
【高校数学 数学Ⅲ 積分法の応用】
$y=\sin2x, y=\cos2x\left(\dfrac{\pi}{8}\leqq x\leqq\dfrac{5\pi}{8}\right)$で囲まれた部分をx軸の周りに回転して出来る立体の体積を求めよ。
【数Ⅲ】積分法の応用:~授業風景シリーズ~ 回転体の体積 前編
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#チャート式#青チャートⅢ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
$y=x^2+1,x=1,x=2$,x軸で囲まれた部分をx軸の周りに回転してできる立体の体積を求めよ。
この動画を見る
【高校数学 数学Ⅲ 積分法の応用】
$y=x^2+1,x=1,x=2$,x軸で囲まれた部分をx軸の周りに回転してできる立体の体積を求めよ。
【受験算数】 速さ:面積図が嫌いな生徒の為の解説【予習シリーズ算数・小5上】
単元:
#算数(中学受験)#速さ#速さその他
教材:
#予習シ#予習シ算数・小5上#中学受験教材#速さ
指導講師:
理数個別チャンネル
問題文全文(内容文):
家から900m離れた学校へ、初めは分速50mの速さで歩いた。間に合いそうになかったので途中から分速80mの速さで走ると15分かかった。では走り始めたのは家を出てから何分後でしょう。【予習シリーズ 5年生】【速さ】
この動画を見る
家から900m離れた学校へ、初めは分速50mの速さで歩いた。間に合いそうになかったので途中から分速80mの速さで走ると15分かかった。では走り始めたのは家を出てから何分後でしょう。【予習シリーズ 5年生】【速さ】
【受験算数】速さ:兄が弟を追う!【予習シリーズ算数・小5上】
単元:
#算数(中学受験)#速さ#旅人算・通過算・流水算
教材:
#予習シ#予習シ算数・小5上#中学受験教材#速さ
指導講師:
理数個別チャンネル
問題文全文(内容文):
弟は分速54mの速さで学校に向かったが忘れものに気づいた兄はその5分後に弟を追いかけると15分で追いついた。兄の速さは分速何mでしょう。【予習シリーズ 5年生】【速さ】
この動画を見る
弟は分速54mの速さで学校に向かったが忘れものに気づいた兄はその5分後に弟を追いかけると15分で追いついた。兄の速さは分速何mでしょう。【予習シリーズ 5年生】【速さ】
【理数個別の過去問解説】2011年度東京大学 数学 文系理系第1問(2)解説
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積S(a)を求めよ。
(2) aが$0<a<1$の範囲を動くとき、S(a)が最大となるaを求めよ。
この動画を見る
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積S(a)を求めよ。
(2) aが$0<a<1$の範囲を動くとき、S(a)が最大となるaを求めよ。
【理数個別の過去問解説】2011年度東京大学 数学 文系理系第1問(1)解説
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積$S(a)$を求めよ。
(2) aが$0<a<1$の範囲を動くとき、$S(a)$が最大となるaを求めよ。
この動画を見る
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積$S(a)$を求めよ。
(2) aが$0<a<1$の範囲を動くとき、$S(a)$が最大となるaを求めよ。
【数Ⅲ】微分法:対数微分、この計算式をどうしますか?
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f(x)=(1+a^x)^{\frac{1}{x}}$は,$0<a<1$の時単調である
[上級問題精講数学Ⅲ、416(1)]
この動画を見る
$f(x)=(1+a^x)^{\frac{1}{x}}$は,$0<a<1$の時単調である
[上級問題精講数学Ⅲ、416(1)]
【数学】(一気見用)高2生必見!! 2019年度8月 第2回 K塾高2模試(※大問1(3)、大問5(*)式に訂正あり)
【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル
単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問6_数列
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
この動画を見る
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
【数C】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
【数A】高2生必見!! 2019年8月 第2回 K塾高2模試 大問4_確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロ を1回投げるごとに次の(規則)に従ってPを動かす。 (規則) ・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。 ・3の目が出たときはx軸の正の方向に2だけ動かす。 ・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。 例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy 座標が2である条件付き確率を求めよ。
この動画を見る
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロ を1回投げるごとに次の(規則)に従ってPを動かす。 (規則) ・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。 ・3の目が出たときはx軸の正の方向に2だけ動かす。 ・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。 例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy 座標が2である条件付き確率を求めよ。
【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-2_図形と方程式
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
mを実数の定数とする。xy平面上に 円$C:x^2+y^2-2x-6y+9=0$ 直線$l:y=mx$ がある。
(1)Cの中心の座標と半径を求めよ。
(2)Cとlが接するようなmの値を求めよ。
(3)(2)のときのCとlの接点をPとする。Pにおいてlに接し、x軸上に中心があるような円の方程式を求めよ
この動画を見る
mを実数の定数とする。xy平面上に 円$C:x^2+y^2-2x-6y+9=0$ 直線$l:y=mx$ がある。
(1)Cの中心の座標と半径を求めよ。
(2)Cとlが接するようなmの値を求めよ。
(3)(2)のときのCとlの接点をPとする。Pにおいてlに接し、x軸上に中心があるような円の方程式を求めよ
【数Ⅰ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-1_2次関数
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
実数xについての2つの不等式$ (x-a^2)(x-2a+2)\leqq 0$・・・①$\vert 2x-1\vert\leqq 2$・・・② がある。ただし、aは実数の定数とする。
(1)$a=0$のとき、①を解け。
(2)②を解け。
(3)①かつ②を満たす整数xがちょうど1個だけ存在するようなaの値の範囲を求めよ。
この動画を見る
実数xについての2つの不等式$ (x-a^2)(x-2a+2)\leqq 0$・・・①$\vert 2x-1\vert\leqq 2$・・・② がある。ただし、aは実数の定数とする。
(1)$a=0$のとき、①を解け。
(2)②を解け。
(3)①かつ②を満たす整数xがちょうど1個だけ存在するようなaの値の範囲を求めよ。
【数学】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問1_小問集合 (※(3)問題文に訂正あり)
単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)$(x+y+2)^2$を展開せよ。
(2)$\dfrac{x^2-2x}{x^2+4x+3}\times\dfrac{2x+2}{x-2}$を計算せよ。
(3)2次関数$y=2x^2-8x+9 (0\leqq x\leqq 1)$における最小値を求めよ。
(4)iを虚数単位とする。$\dfrac{2+i}{1-3i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=3, BC=4\sqrt2, CA=5$である三角形ABCにおいて、$\cos\angle ABC$を求めよ。また、三 角形ABCの面積を求めよ。
(6)男子6人、女子4人の合計10人から3人を選ぶとき、選び方は全部で何通りか。 また、そのうち、女子が少なくとも1人含まれるような選び方は何通りか。
この動画を見る
(1)$(x+y+2)^2$を展開せよ。
(2)$\dfrac{x^2-2x}{x^2+4x+3}\times\dfrac{2x+2}{x-2}$を計算せよ。
(3)2次関数$y=2x^2-8x+9 (0\leqq x\leqq 1)$における最小値を求めよ。
(4)iを虚数単位とする。$\dfrac{2+i}{1-3i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=3, BC=4\sqrt2, CA=5$である三角形ABCにおいて、$\cos\angle ABC$を求めよ。また、三 角形ABCの面積を求めよ。
(6)男子6人、女子4人の合計10人から3人を選ぶとき、選び方は全部で何通りか。 また、そのうち、女子が少なくとも1人含まれるような選び方は何通りか。
【数B】ベクトル:正射影ベクトルの仕組みと使い方
単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
正射影ベクトルについて解説します!
この動画を見る
正射影ベクトルについて解説します!
【数C】ベクトル:正射影ベクトルの仕組みと使い方
【数Ⅲ】積分法:置換積分の区間の取り方
【英語】英語版『鬼滅の刃』和訳してみた!!※高校生以上向け
単元:
#英語(高校生)#英文法#会話文・イディオム・構文・英単語#英文解釈#助動詞#関係代名詞・関係副詞・複合関係詞#比較#会話文
指導講師:
理数個別チャンネル
問題文全文(内容文):
鬼滅を一切読んだことのない先生が英語版の『鬼滅』を読んで
本文を再現できるかやってみた!!
(ダサい和訳だったらゴメンナサイ)
この動画を見る
鬼滅を一切読んだことのない先生が英語版の『鬼滅』を読んで
本文を再現できるかやってみた!!
(ダサい和訳だったらゴメンナサイ)
【英語】関係代名詞thatを使っちゃいけない場面を徹底解説!
単元:
#英語(中学生)#英語(高校生)#英文法#中3英語#関係代名詞・関係副詞・複合関係詞#関係代名詞(主格、目的格、所有格、thatの用法、前置詞+関係代名詞)
指導講師:
理数個別チャンネル
問題文全文(内容文):
万能な関係代名詞thatだけど、「使ってはいけない場面」があります!
とても重要なのでしっかり覚えておこう!
この動画を見る
万能な関係代名詞thatだけど、「使ってはいけない場面」があります!
とても重要なのでしっかり覚えておこう!
【数学】(一気見用)高2生必見!! 2020年度 第2回 K塾高2模試
単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)(a+3)³を展開せよ。
(2)(x-3)/(x²+x) + (x+9)/(x²+3x)を計算せよ。
(3)2次関数y=x²+2x (-2≦x≦2)における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。(7+3i)/(1+i)をa+bi (a,bは実数の形で表せ。 )
(5)0°≦θ<180°、sinθ+cosθ=1/2のとき、sinθ・cosθとcosθ-sinθを求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。
大問2-1:2次関数
実数xについての2つの不等式 ax²+2ax-2a+1≦0・・・①
│x-2│≦1・・・② がある。
ただし、aは0でない実数の定数とする。
(1)a=-1のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。
大問2-2:図形と計量
三角形ABCにおいて、AB=7、BC=8、CA=3とする。
(1)cos∠BACの値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、 sin∠BCP:sin∠CBP=1:3となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。
大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。
大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)z=0,1,2,3,4,5,6,7,8,9,10について、2^zを7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 7x=2^z+3・・・① を満たしている。0≦z≦10のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 (4x+3y)(x-y)=2^z・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。
大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 P(x)=x³+3x²+3x+a があり、P(-2)=0を満たす。
(1)aの値を求めよ。
(2)方程式P(x)=0を解け。
(3)方程式P(x)=0の虚数解のうち、虚部が正であるものをα、虚部が負であるもの をβと表す。また、方程式P(x)=0の実数解をγと表す。さらに、A=α+1、B=β+1、 C=γ+1とする。
(i)A²+B²、A³、B³の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。A^n+B^n+C^n=0を満たすnの個数を求めよ。
大問6:三角関数
θの関数 f(θ)=1/2sin2θ-√2kcos(θ-π/4)+k² がある。ただし、kは正の定数である。
(1)sin2θ,cos(θ-π/4)のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)f(θ)を(sinθ-p)(cosθ-q) (p,qは定数)の形で表せ。 (ii)k=√3/2のとき、方程式f(θ)=0を0≦θ<2πにおいて解け。
(3)θの方程式f(θ)=0が0≦θ<2πにおいて相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式f(θ)=0の0≦θ<2πにおける最小の解をα、最大の解をβと する。α+β=5π/3となるようなkの値を求めよ。
大問7:ベクトル
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る
大問1:小問集合
(1)(a+3)³を展開せよ。
(2)(x-3)/(x²+x) + (x+9)/(x²+3x)を計算せよ。
(3)2次関数y=x²+2x (-2≦x≦2)における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。(7+3i)/(1+i)をa+bi (a,bは実数の形で表せ。 )
(5)0°≦θ<180°、sinθ+cosθ=1/2のとき、sinθ・cosθとcosθ-sinθを求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。
大問2-1:2次関数
実数xについての2つの不等式 ax²+2ax-2a+1≦0・・・①
│x-2│≦1・・・② がある。
ただし、aは0でない実数の定数とする。
(1)a=-1のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。
大問2-2:図形と計量
三角形ABCにおいて、AB=7、BC=8、CA=3とする。
(1)cos∠BACの値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、 sin∠BCP:sin∠CBP=1:3となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。
大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。
大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)z=0,1,2,3,4,5,6,7,8,9,10について、2^zを7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 7x=2^z+3・・・① を満たしている。0≦z≦10のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 (4x+3y)(x-y)=2^z・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。
大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 P(x)=x³+3x²+3x+a があり、P(-2)=0を満たす。
(1)aの値を求めよ。
(2)方程式P(x)=0を解け。
(3)方程式P(x)=0の虚数解のうち、虚部が正であるものをα、虚部が負であるもの をβと表す。また、方程式P(x)=0の実数解をγと表す。さらに、A=α+1、B=β+1、 C=γ+1とする。
(i)A²+B²、A³、B³の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。A^n+B^n+C^n=0を満たすnの個数を求めよ。
大問6:三角関数
θの関数 f(θ)=1/2sin2θ-√2kcos(θ-π/4)+k² がある。ただし、kは正の定数である。
(1)sin2θ,cos(θ-π/4)のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)f(θ)を(sinθ-p)(cosθ-q) (p,qは定数)の形で表せ。 (ii)k=√3/2のとき、方程式f(θ)=0を0≦θ<2πにおいて解け。
(3)θの方程式f(θ)=0が0≦θ<2πにおいて相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式f(θ)=0の0≦θ<2πにおける最小の解をα、最大の解をβと する。α+β=5π/3となるようなkの値を求めよ。
大問7:ベクトル
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
【受験理科】豆電球回路:豆電球回路の解き方 第4回(全4回)混合編
【受験理科】豆電球回路:豆電球回路の解き方 第3回(全4回)並列編
【数学】(一気見用)高2生必見!! 2020年度 第2回 K塾高2模試(※大問4(1)(ii)の答えに訂正あり)
単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x^2+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$をa+bi (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。
大問2-1:2次関数
実数xについての2つの不等式 $ax^2+2ax-2a+1\leqq 0$・・・①
$\vert x-2\vert \leqq 1$・・・② がある。
ただし、aは0でない実数の定数とする。
(1)$a=-1$のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。
大問2-2:図形と計量
三角形ABCにおいて、$AB=7、BC=8、CA=3$とする。
(1)$\cos\angle BAC$の値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、$ \sin\angle BCP:\sin\angle CBP=1:3$となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。
大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。
大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)$z=0,1,2,3,4,5,6,7,8,9,10$について、$2^z$を7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 $7x=2^z+3$・・・① を満たしている。$0\leqq z\leqq 10$のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 $(4x+3y)(x-y)=2^z$・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。
大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。
大問6:三角関数
$\theta$の関数 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(\theta-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれを$\sin\theta、\cos\theta$を用いて表せ。
(2)(i)f($\theta$)を$(\sin\theta-p)(\cos\theta-q) $(p,qは定数)の形で表せ。$ (ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq\theta\lt 2\pi$において解け。
(3)θの方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
大問7:ベクトル
三角形OABがあり、$OA=2,OB=1,\angle AOB=120°$である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。また$OB=a,OB=b$とする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)$OH=kOD$(kは実数)と表される点Hがある。$CT⊥OD$となるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを$\angle AOD=\angle POD$となるようにとる。OPをa,bを用いて表せ。
この動画を見る
大問1:小問集合
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x^2+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$をa+bi (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。
大問2-1:2次関数
実数xについての2つの不等式 $ax^2+2ax-2a+1\leqq 0$・・・①
$\vert x-2\vert \leqq 1$・・・② がある。
ただし、aは0でない実数の定数とする。
(1)$a=-1$のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。
大問2-2:図形と計量
三角形ABCにおいて、$AB=7、BC=8、CA=3$とする。
(1)$\cos\angle BAC$の値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、$ \sin\angle BCP:\sin\angle CBP=1:3$となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。
大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。
大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)$z=0,1,2,3,4,5,6,7,8,9,10$について、$2^z$を7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 $7x=2^z+3$・・・① を満たしている。$0\leqq z\leqq 10$のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 $(4x+3y)(x-y)=2^z$・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。
大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。
大問6:三角関数
$\theta$の関数 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(\theta-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれを$\sin\theta、\cos\theta$を用いて表せ。
(2)(i)f($\theta$)を$(\sin\theta-p)(\cos\theta-q) $(p,qは定数)の形で表せ。$ (ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq\theta\lt 2\pi$において解け。
(3)θの方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
大問7:ベクトル
三角形OABがあり、$OA=2,OB=1,\angle AOB=120°$である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。また$OB=a,OB=b$とする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)$OH=kOD$(kは実数)と表される点Hがある。$CT⊥OD$となるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを$\angle AOD=\angle POD$となるようにとる。OPをa,bを用いて表せ。
【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問6_三角関数
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\theta$の関数。 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(θ-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)$f(\theta)$を$(\sin\theta-p)(\cos\theta-q)$ (p,qは定数)の形で表せ。 $(ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq \theta\lt 2\pi$において解け。
(3)$\theta$の方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、$\theta$の方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
この動画を見る
$\theta$の関数。 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(θ-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)$f(\theta)$を$(\sin\theta-p)(\cos\theta-q)$ (p,qは定数)の形で表せ。 $(ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq \theta\lt 2\pi$において解け。
(3)$\theta$の方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、$\theta$の方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問5_式と証明・複素数と方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。
この動画を見る
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。