東京工業大学

福田の数学〜東京工業大学2024年理系第4問〜表の出る確率が異なるコインを投げたときの表が奇数枚出る確率と極限

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
を正の整数とし、 ,..., を 枚の硬貨とする。各 =1,..., に対し、硬貨 を投げて表が出る確率を 、裏が出る確率を1- とする。この 枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1) = ( =1,..., )のとき、このゲームで成功する確率 を求めよ。
(2) = ( =1,..., )のとき、このゲームで成功する確率 を求めよ。
(3) = ( は正の定数)で =1,..., に対して
=
とする。このゲームで成功する確率を とするとき、 を求めよ。
この動画を見る
(1)
(2)
(3)
とする。このゲームで成功する確率を
【高校数学】毎日積分54日目 実践編⑤回転体シリーズ~斜めで、切り取って、最短距離のフルコース~【難易度:★★★★★】【毎日17時投稿】

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
空間内において、連立不等式
により定まる領域を とし、2点 を通る直線を とする。
(1) を満たす実数tに対し、点 を通り に重直な平面を とする。また、実数 に対し、点 を通り 軸に平行な直線を とする。 と との交点の 座標を と を用いて表せ。
(2) を回転軸に持つ回転体で に含まれるものを考える。このような回転体のうちで体積が最大となるものの体積を求めよ。
【東京工業大学 2018】
この動画を見る
により定まる領域を
(1)
(2)
【東京工業大学 2018】
【高校数学】毎日積分33日目【難易度:★★★★★】【毎日17時投稿】

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式が で成り立つような関数f(x)と定数A,Bを求めよ.
ただし,f(x)は に対して定義される連続関数とする.(東京工業大学 2019)
この動画を見る
次の等式が
ただし,f(x)は
大学入試問題#615「ラッキー問題?」 東京工業大学(1976) #積分方程式

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
のとき
関数 定数 を求めよ。
出典:1976年東京工業大学 入試問題
この動画を見る
関数
出典:1976年東京工業大学 入試問題
福田の数学〜ChatGPTに東工大第1問を解かせてみたら大変なことに〜

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#その他#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
の整数部分を求めよ。
東工大過去問
この動画を見る
東工大過去問
2023年東工大の整数問題!86400!?大きい値をどう扱うか【東京工業大学】【数学 入試問題】

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
を満たす整数の組(x,y)を求めよ
東工大過去問
この動画を見る
東工大過去問
2023年東工大の整数問題!86400!?大きい値をどう扱うか【東京工業大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
方程式 =86400
を満たす整数の組 をすべて求めよ。
この動画を見る
方程式
を満たす整数の組
福田の数学〜東京工業大学2023年理系第5問(PART2)〜4直線に接する球面の決定

単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。
2023東京工業大学理系過去問
この動画を見る
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。
2023東京工業大学理系過去問
福田の数学〜東京工業大学2023年理系第5問(PART1)〜4直線に接する球面の決定

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#点と直線#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。
2023東京工業大学理系過去問
この動画を見る
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。
2023東京工業大学理系過去問
福田の数学〜東京工業大学2023年理系第4問〜非回転体の体積

単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
xyz空間においてx軸を軸とする半径2の円柱から、|y|<1かつ|z|<1で表される角柱の内部を取り除いたものをAとする。また、Aをx軸のまわりに45°回転してからz軸のまわりに90°回転したものをBとする。AとBの共通部分の体積を求めよ。
2023東京工業大学理系過去問
この動画を見る
2023東京工業大学理系過去問
福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
実数が書かれた3枚のカード , , から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を で表す。
(1)| |<5となる確率 を求めよ。
(2) が実数となる確率 を求めよ。
2023東京工業大学理系過去問
この動画を見る
(1)|
(2)
2023東京工業大学理系過去問
2023東工大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数 を求めよ.
2023東工大過去問
この動画を見る
整数
2023東工大過去問
福田の数学〜東京工業大学2023年理系第2問〜不定方程式の整数解

単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
方程式
=86400
を満たす整数の組(x,y)をすべて求めよ。
2023東京工業大学理系過去問
この動画を見る
を満たす整数の組(x,y)をすべて求めよ。
2023東京工業大学理系過去問
福田の数学〜東京工業大学2023年理系第1問〜定積分の値の評価

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
実数 の整数部分を求めよ。
2023東京工業大学理系過去問
この動画を見る
2023東京工業大学理系過去問
福田の数学〜東京工業大学2023年理系第1問〜定積分の値の評価

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
実数 の整数部分を求めよ。
2023東京工業大学理系過去問
この動画を見る
2023東京工業大学理系過去問
福田の1.5倍速演習〜合格する重要問題089〜東京工業大学2018年度理系第2問〜3変数の不定方程式の整数解

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)35x+91y+65z=3 を満たす整数の組(x,y,z)を一組求めよ。
(2)35x+91y+65z=3 を満たす整数の組(x,y,z)の中で の値が最小となるもの、およびその最小値を求めよ。
2018東京工業大学理系過去問
この動画を見る
(1)35x+91y+65z=3 を満たす整数の組(x,y,z)を一組求めよ。
(2)35x+91y+65z=3 を満たす整数の組(x,y,z)の中で
2018東京工業大学理系過去問
福田の1.5倍速演習〜合格する重要問題020〜東京工業大学2016年度理系数学第5問〜媒介変数で表された曲線の追跡と面積

単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京工業大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
次のように媒介変数表示されたxy平面上の曲線をCとする。
ただし、 である。
(1) および を計算し、Cの概形を図示せよ。
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。
2016東京工業大学理系過去問
この動画を見る
次のように媒介変数表示されたxy平面上の曲線をCとする。
ただし、
(1)
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。
2016東京工業大学理系過去問
福田の1.5倍速演習〜合格する重要問題019〜東京工業大学2016年度理系数学第4問〜整数に関する論証

単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
nを2以上の自然数とする。
(1)nが素数または4のとき、 はnで割り切れないことを示せ。
(2)nが素数でなくかつ4でもないとき、 はnで割り切れることを示せ。
2016東京工業大学理系過去問
この動画を見る
nを2以上の自然数とする。
(1)nが素数または4のとき、
(2)nが素数でなくかつ4でもないとき、
2016東京工業大学理系過去問
福田の数学〜東京工業大学2022年理系第5問〜定積分と不等式と区分求積

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
aは を満たす実数とし、
とする。このとき、次の問いに答えよ。
(1)次の等式(*)を満たすaがただ1つ存在することを示せ。
(*)
(2) を満たす実数b,cについて、不等式
が成り立つことを示せ。
(3)次の試行を考える。\
[試行]n個の数 を出目とする、あるルーレットをk回まわす。
この試行において、各 についてiが出た回数を とし、
(**)
が成り立つとする。このとき、(1)の等式(*)が成り立つことを示せ。
(4)(3)の[試行]において出た数の平均値を とし、 とする。
(**)が成り立つとき、極限 をaを用いて表せ。
2022東京工業大学理系過去問
この動画を見る
aは
とする。このとき、次の問いに答えよ。
(1)次の等式(*)を満たすaがただ1つ存在することを示せ。
(*)
(2)
が成り立つことを示せ。
(3)次の試行を考える。\
[試行]n個の数
この試行において、各
(**)
が成り立つとする。このとき、(1)の等式(*)が成り立つことを示せ。
(4)(3)の[試行]において出た数の平均値を
(**)が成り立つとき、極限
2022東京工業大学理系過去問
福田の数学〜東京工業大学2022年理系第4問〜複素数平面上の点の軌跡と線分の通過範囲

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
aを正の実数とする。複素数 が かつ を満たしながら
動くとき、複素数平面上の点 が描く図形をKとする。
このとき、次の問いに答えよ。
(1)Kが円となるためのaの条件を求めよ。また、そのとき
Kの中心が表す複素数とKの半径を、それぞれaを用いて表せ。
(2)aが(1)の条件を満たしながら動くとき、虚軸に平行で円Kの直径となる
線分が通過する領域を複素数平面上に図示せよ。
2022東京工業大学理系過去問
この動画を見る
aを正の実数とする。複素数
動くとき、複素数平面上の点
このとき、次の問いに答えよ。
(1)Kが円となるためのaの条件を求めよ。また、そのとき
Kの中心が表す複素数とKの半径を、それぞれaを用いて表せ。
(2)aが(1)の条件を満たしながら動くとき、虚軸に平行で円Kの直径となる
線分が通過する領域を複素数平面上に図示せよ。
2022東京工業大学理系過去問
福田の数学〜東京工業大学2022年理系第3問〜直角三角形の頂点の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
を満たす実数とする。
および を満たす直角三角形APB
が、次の2つの条件 を満たしながら、時刻t=0から時刻 まで
xy平面上を動くとする。
時刻tでの点A,Bの座標は、それぞれ である。
点Pは第一象限内にある。
このとき、次の問いに答えよ。
(1)点Pはある直線上を動くことを示し、その直線の方程式を を用いて表せ。
(2)時刻 から時刻 までの間に点Pが動く道のりを を用いて表せ。
(3)xy平面内において、連立不等式
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。
2022東京工業大学理系過去問
この動画を見る
が、次の2つの条件
xy平面上を動くとする。
このとき、次の問いに答えよ。
(1)点Pはある直線上を動くことを示し、その直線の方程式を
(2)時刻
(3)xy平面内において、連立不等式
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。
2022東京工業大学理系過去問
福田の数学〜東工大2022理系1修正版

単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
a,bを実数とし、 とする。a,bが
を満たしながら動くとき、 を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。
2022東京工業大学理系過去問
この動画を見る
a,bを実数とし、
を満たしながら動くとき、
複素平面上に図示せよ。
2022東京工業大学理系過去問
福田の数学〜東京工業大学2022年理系第2問〜3つの数の最大公約数

単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
3つの正の整数a,b,cの最大公約数が1であるとき、次の問いに答えよ。
(1) の最大公約数は1であることを示せ。
(2) の最大公約数となるような正の整数を
全て求めよ。
2022東京工業大学理系過去問
この動画を見る
3つの正の整数a,b,cの最大公約数が1であるとき、次の問いに答えよ。
(1)
(2)
全て求めよ。
2022東京工業大学理系過去問
福田の数学〜東京工業大学2022年理系第1問〜2次方程式の解の存在範囲

単元:
#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
a,bを実数とし、 とする。a,bが
を満たしながら動くとき、 を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。
2022東京工業大学理系過去問
この動画を見る
a,bを実数とし、
を満たしながら動くとき、
複素平面上に図示せよ。
2022東京工業大学理系過去問
大学入試問題#152 東京工業大学(2002) 極限

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
を求めよ。
出典:2002年東京工業大学 入試問題
この動画を見る
出典:2002年東京工業大学 入試問題
大学入試問題#146 東京工業大学(1966) 定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
を計算せよ。
出典:1966年東京工業大学 入試問題
この動画を見る
出典:1966年東京工業大学 入試問題
不遇な大学3選:難関大なのに、世間の評価が微妙な大学【篠原好】

単元:
#一橋大学#東京工業大学#慶應義塾大学#一橋大学#慶應義塾大学#慶應義塾大学#慶應義塾大学
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
世間の評価が微妙な大学
「難関大なのに不遇な大学3選」について紹介しています。
この動画を見る
世間の評価が微妙な大学
「難関大なのに不遇な大学3選」について紹介しています。
解きがいがある!楽しい問題を出す大学5選【篠原好】

単元:
#京都大学#一橋大学#東京工業大学#慶應義塾大学#一橋大学#慶應義塾大学#慶應義塾大学#慶應義塾大学#名古屋大学#京都大学#京都大学#京都大学
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
解きがいがある!
「楽しい問題を出す大学5選」について紹介しています。
この動画を見る
解きがいがある!
「楽しい問題を出す大学5選」について紹介しています。
【理数個別の過去問解説】1978年度東京工業大学 数学 第2問解説

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,b,cは1<a<b<cをみたす整数とし,(ab-1)(bc-1)(ca-1)はabcで割り切れるとする。このとき次の問に答えよう。
(1)ab+bc+ca-1はabcで割り切れることを示そう。
(2)a,b,cをすべて求めよう。
この動画を見る
a,b,cは1<a<b<cをみたす整数とし,(ab-1)(bc-1)(ca-1)はabcで割り切れるとする。このとき次の問に答えよう。
(1)ab+bc+ca-1はabcで割り切れることを示そう。
(2)a,b,cをすべて求めよう。
【理数個別の過去問解説】1968年度東京工業大学 数学 第1問解説

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
不等式 をみたす自然数a,b,cのすべての組を求めよう。ただ し、a>b>cとする。
この動画を見る
不等式