大学入試過去問(数学)
大学入試過去問(数学)
【数学】高2生必見!!2020年度 第2回 K塾高2模試 大問1_小問集合

単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x²+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、$M-m$を求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$を$a+bi$ (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt 180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。
この動画を見る
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x²+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、$M-m$を求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$を$a+bi$ (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt 180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。
数学「大学入試良問集」【19−4 2曲線が接する条件】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2曲線$y=\sqrt{ x },\ y=a\ log\ x$、が1点のみを共有するように正の数$a$を定め、このとき2曲線と$x$軸で囲まれる面積を求めよ。
ただし、必要なら$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{log\ x}{x}=0$は用いてよい。
この動画を見る
2曲線$y=\sqrt{ x },\ y=a\ log\ x$、が1点のみを共有するように正の数$a$を定め、このとき2曲線と$x$軸で囲まれる面積を求めよ。
ただし、必要なら$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{log\ x}{x}=0$は用いてよい。
福田の数学〜慶應義塾大学2021年看護医療学部第2問(2)〜外接する円に接する直線

単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)円$x^2+y^2=1$をCと表す。$p \gt 1$とし、点P(0,p)を通るCの2つの接線
を$l_1,l_2$とする。$l_1,l_2$の方程式は
$y=\boxed{\ \ タ\ \ }, y=\boxed{\ \ チ\ \ }$
であり、$l_1,l_2$が直交するのは$p=\boxed{\ \ ツ\ \ }$のときである。
$p=\boxed{\ \ ツ\ \ }$のとき、$l_1,l_2$を接線に持ち、かつCに外接する円の中で中心が
y軸上にある2つの円の半径は$\boxed{\ \ テ\ \ }$および$\boxed{\ \ ト\ \ }$である。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{2}}$(2)円$x^2+y^2=1$をCと表す。$p \gt 1$とし、点P(0,p)を通るCの2つの接線
を$l_1,l_2$とする。$l_1,l_2$の方程式は
$y=\boxed{\ \ タ\ \ }, y=\boxed{\ \ チ\ \ }$
であり、$l_1,l_2$が直交するのは$p=\boxed{\ \ ツ\ \ }$のときである。
$p=\boxed{\ \ ツ\ \ }$のとき、$l_1,l_2$を接線に持ち、かつCに外接する円の中で中心が
y軸上にある2つの円の半径は$\boxed{\ \ テ\ \ }$および$\boxed{\ \ ト\ \ }$である。
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年看護医療学部第2問(1)〜反復試行の確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ (1)座標平面上を動く点Pが原点の位置がある。1個のさいころを投げて、1または2の
目が出たときには、Pはx軸の正の向きに1だけ進み、他の目が出たときには、
Pはy軸の正の向きに2だけ進むことにして、さいころを3回投げる。
点Pの座標が(2,2)である確率は$\boxed{\ \ ス\ \ }$であり、Pと原点との距離が3以上である
確率は$\boxed{\ \ セ\ \ }$である。Pと原点との距離が3以上という条件の下で、Pが座標軸上にない
条件付確率は$\boxed{\ \ ソ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{2}}$ (1)座標平面上を動く点Pが原点の位置がある。1個のさいころを投げて、1または2の
目が出たときには、Pはx軸の正の向きに1だけ進み、他の目が出たときには、
Pはy軸の正の向きに2だけ進むことにして、さいころを3回投げる。
点Pの座標が(2,2)である確率は$\boxed{\ \ ス\ \ }$であり、Pと原点との距離が3以上である
確率は$\boxed{\ \ セ\ \ }$である。Pと原点との距離が3以上という条件の下で、Pが座標軸上にない
条件付確率は$\boxed{\ \ ソ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年看護医療学部第1問(6)〜高次方程式

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (6)$a,b$を実数、$i$を虚数単位とする。4次方程式
$x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0$
の1つの解が$1+i$であるとき、
$a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }$
である。また、他の解は$\boxed{\ \ シ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{1}}$ (6)$a,b$を実数、$i$を虚数単位とする。4次方程式
$x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0$
の1つの解が$1+i$であるとき、
$a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }$
である。また、他の解は$\boxed{\ \ シ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年看護医療学部第1問(5)〜約数の個数が6個の自然数

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (5)自然数nは1とn以外にちょうど4個の約数をもつとする。このような
自然数nの中で、最小の数は$\boxed{\ \ ク\ \ }$であり、最小の奇数は$\boxed{\ \ ケ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{1}}$ (5)自然数nは1とn以外にちょうど4個の約数をもつとする。このような
自然数nの中で、最小の数は$\boxed{\ \ ク\ \ }$であり、最小の奇数は$\boxed{\ \ ケ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年看護医療学部第1問(4)〜等比数列となる条件

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (4)数列$\left\{a_n\right\}$の階差数列を$\left\{b_n\right\}$とする。$\left\{b_n\right\}$が初項2、公比$\frac{1}{3}$の等比数列と
なるとき、$\left\{b_n\right\}$の一般項は$b_n=\boxed{\ \ オ\ \ }$である。また、$\left\{a_n\right\}$も等比数列に
なるならば、$a_1=\boxed{\ \ カ\ \ }$である。このとき$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ キ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{1}}$ (4)数列$\left\{a_n\right\}$の階差数列を$\left\{b_n\right\}$とする。$\left\{b_n\right\}$が初項2、公比$\frac{1}{3}$の等比数列と
なるとき、$\left\{b_n\right\}$の一般項は$b_n=\boxed{\ \ オ\ \ }$である。また、$\left\{a_n\right\}$も等比数列に
なるならば、$a_1=\boxed{\ \ カ\ \ }$である。このとき$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ キ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年看護医療学部第1問(3)〜指数法則と式の値

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)実数$a$が$2^a-2^{-a}=3$を満たしているとき、$2^a=\boxed{\ \ ウ\ \ }$であり、
$4^a-4^{-a}=\boxed{\ \ エ\ \ }$
である。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{1}}$ (3)実数$a$が$2^a-2^{-a}=3$を満たしているとき、$2^a=\boxed{\ \ ウ\ \ }$であり、
$4^a-4^{-a}=\boxed{\ \ エ\ \ }$
である。
2021慶應義塾大学看護医療学部過去問
数学「大学入試良問集」【19−3 f(sinx)と置換積分】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)$が$0 \leqq x \leqq 1$で連続な関数であるとき
$\displaystyle \int_{0}^{\pi}xf(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi}f(\sin\ x)dx$
が成立することを示し、これを用いて$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{3+\sin^2x}dx$を求めよ。
この動画を見る
$f(x)$が$0 \leqq x \leqq 1$で連続な関数であるとき
$\displaystyle \int_{0}^{\pi}xf(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi}f(\sin\ x)dx$
が成立することを示し、これを用いて$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{3+\sin^2x}dx$を求めよ。
福田の数学〜慶應義塾大学2021年看護医療学部第1問(2)〜三角方程式

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(2)$2(\cos\theta-\sin\theta)^2=1$を満たす$\theta$を$0 \leqq \theta \leqq \pi$の範囲で求めると$\boxed{\ \ イ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{1}}$
(2)$2(\cos\theta-\sin\theta)^2=1$を満たす$\theta$を$0 \leqq \theta \leqq \pi$の範囲で求めると$\boxed{\ \ イ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年看護医療学部第1問(1)〜二項定理

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$(a+b)^{21}$の展開式$a^{18}b^3$の係数は$\boxed{\ \ ア\ \ }$である。
$(a+b+c)^{21}$の展開式における$a^{12}b^3c^6$の係数を求めよ。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{1}}$(1)$(a+b)^{21}$の展開式$a^{18}b^3$の係数は$\boxed{\ \ ア\ \ }$である。
$(a+b+c)^{21}$の展開式における$a^{12}b^3c^6$の係数を求めよ。
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xy平面上に、xの関数
$f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2$
のグラフ$y=f(x)$がある。$y=f(x)$が任意のaに対して
通る定点をP、点Pにおける接線が$y=f(x)$と交わる点をQとおく。
(1)点Pの座標は$\boxed{\ \ ツ\ \ }$であり、点Pにおける接線の方程式は$y=\boxed{\ \ テ\ \ }$である。
(2)$a=5$のとき、$y=f(x)$上の点における接線は、$x=\boxed{\ \ ト\ \ }$において傾きが
最小になる。
(3)$x=\boxed{\ \ ト\ \ }$において$f(x)$が極値をとるとき、$a=\boxed{\ \ ナ\ \ }$であり、
点$(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))$を$S$とおくと、三角形SPQの面積は$\boxed{\ \ ニ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{3}}$xy平面上に、xの関数
$f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2$
のグラフ$y=f(x)$がある。$y=f(x)$が任意のaに対して
通る定点をP、点Pにおける接線が$y=f(x)$と交わる点をQとおく。
(1)点Pの座標は$\boxed{\ \ ツ\ \ }$であり、点Pにおける接線の方程式は$y=\boxed{\ \ テ\ \ }$である。
(2)$a=5$のとき、$y=f(x)$上の点における接線は、$x=\boxed{\ \ ト\ \ }$において傾きが
最小になる。
(3)$x=\boxed{\ \ ト\ \ }$において$f(x)$が極値をとるとき、$a=\boxed{\ \ ナ\ \ }$であり、
点$(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))$を$S$とおくと、三角形SPQの面積は$\boxed{\ \ ニ\ \ }$である。
2021慶應義塾大学薬学部過去問
福田の数学〜慶應義塾大学2021年薬学部第2問〜確率の基本性質

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large{\boxed{2}}}$与えられた図形の頂点から無作為に異なる3点を選んで三角形を作る試行を考える。ただし、
この試行におけるすべての根元事象は同様に確からしいとする。
(1)正n角形における前事象を$U_n$とし、その中で面積が最小の三角形ができる
事象を$A_n$とする。ただし、$n$は$n \geqq 6$を満たす自然数とする。
$(\textrm{i})$事象$U_6$において、事象$A_6$の確率は$\boxed{\ \ ス\ \ }$である。
$(\textrm{ii})$事象$U_n$において、事象$A_n$の確率をnの式で表すと$\boxed{\ \ セ\ \ }$であり、
この確率が$\frac{1}{1070}$以下になる最小の$n$の値は$\boxed{\ \ ソ\ \ }$である。
$(\textrm{iii})$事象$U_n \cap \bar{ A_n }$において、面積が最小となる三角形ができる確率をnの式で
表すと$\boxed{\ \ タ\ \ }$である。
(2)1辺の長さが$\sqrt2$である立方体における全事象をVとすると、事象$V$に含まれ
るすべての三角形の面積の平均値は$\boxed{\ \ チ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large{\boxed{2}}}$与えられた図形の頂点から無作為に異なる3点を選んで三角形を作る試行を考える。ただし、
この試行におけるすべての根元事象は同様に確からしいとする。
(1)正n角形における前事象を$U_n$とし、その中で面積が最小の三角形ができる
事象を$A_n$とする。ただし、$n$は$n \geqq 6$を満たす自然数とする。
$(\textrm{i})$事象$U_6$において、事象$A_6$の確率は$\boxed{\ \ ス\ \ }$である。
$(\textrm{ii})$事象$U_n$において、事象$A_n$の確率をnの式で表すと$\boxed{\ \ セ\ \ }$であり、
この確率が$\frac{1}{1070}$以下になる最小の$n$の値は$\boxed{\ \ ソ\ \ }$である。
$(\textrm{iii})$事象$U_n \cap \bar{ A_n }$において、面積が最小となる三角形ができる確率をnの式で
表すと$\boxed{\ \ タ\ \ }$である。
(2)1辺の長さが$\sqrt2$である立方体における全事象をVとすると、事象$V$に含まれ
るすべての三角形の面積の平均値は$\boxed{\ \ チ\ \ }$である。
2021慶應義塾大学薬学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(7)〜四面体の体積

単元:
#数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (7)座標空間内に4点$A(0,-2,2),\ B(0,2,2),\ C(2,0,-2),\ D(-2,0,-2)$がある。
この4点を頂点とする四面体ABCDの体積は$\boxed{シ}$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{1}}$ (7)座標空間内に4点$A(0,-2,2),\ B(0,2,2),\ C(2,0,-2),\ D(-2,0,-2)$がある。
この4点を頂点とする四面体ABCDの体積は$\boxed{シ}$である。
2021慶應義塾大学薬学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(6)〜整数解

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(6)整数$x,y$が$x \gt 1,y \gt 1,x \neq y$を満たし、等式
$6x^2+13xy+7x+5y^2+7y+2=966$
を満たすとする。
$(\textrm{i})6x^2+13xy+7x+5y^2+7y+2$を因数分解すると$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})$この等式を満たすxとyの組をすべて挙げると$(x,y)=\boxed{\ \ サ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{1}}$(6)整数$x,y$が$x \gt 1,y \gt 1,x \neq y$を満たし、等式
$6x^2+13xy+7x+5y^2+7y+2=966$
を満たすとする。
$(\textrm{i})6x^2+13xy+7x+5y^2+7y+2$を因数分解すると$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})$この等式を満たすxとyの組をすべて挙げると$(x,y)=\boxed{\ \ サ\ \ }$である。
2021慶應義塾大学薬学部過去問
数学「大学入試良問集」【19−2 三角関数の面積の二等分】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#京都府立医科大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の不等式が定める図形を$D$とする。
$0 \leqq x \leqq \displaystyle \frac{\pi}{2},0 \leqq y \leqq \sin2x$
(1)
曲線$y=a\ \sin\ x$と$y=\sin2x$が$0 \lt x \lt \displaystyle \frac{\pi}{2}$で交わるような定数$a$の範囲を求めよ。
(2)
曲線$y=a\ \sin\ x$が図形$D$を面積の等しい2つの部分に分けるような定数$a$を求めよ。
この動画を見る
次の不等式が定める図形を$D$とする。
$0 \leqq x \leqq \displaystyle \frac{\pi}{2},0 \leqq y \leqq \sin2x$
(1)
曲線$y=a\ \sin\ x$と$y=\sin2x$が$0 \lt x \lt \displaystyle \frac{\pi}{2}$で交わるような定数$a$の範囲を求めよ。
(2)
曲線$y=a\ \sin\ x$が図形$D$を面積の等しい2つの部分に分けるような定数$a$を求めよ。
福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

単元:
#計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。
2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
この動画を見る
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。
2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)$\theta$は実数で、$-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たす。方程式
$4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1$
を満たすとき、$\sin\theta+\cos\theta$の値は$\boxed{\ \ カ\ \ }$であり、
$\sin\theta$の値は$\boxed{\ \ キ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{1}}$(4)$\theta$は実数で、$-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たす。方程式
$4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1$
を満たすとき、$\sin\theta+\cos\theta$の値は$\boxed{\ \ カ\ \ }$であり、
$\sin\theta$の値は$\boxed{\ \ キ\ \ }$である。
2021慶應義塾大学薬学部過去問

単元:
#化学#英語(高校生)#東京大学#京都大学#数学(高校生)#理科(高校生)#東京大学#東京大学#京都大学#京都大学#京都大学
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
何をしてから模試を迎えるべきか?
「夏の東大模試・京大模試対策」についてお話しています。
この動画を見る
何をしてから模試を迎えるべきか?
「夏の東大模試・京大模試対策」についてお話しています。
福田の数学〜慶應義塾大学2021年薬学部第1問(3)〜アポロニウスの円と面積

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)$xy$平面上において、点Pは2点$A(0,0),\ B(7,0)$に対して$AP:BP=3:4$
を満たす。
$(\textrm{i})$点Pの軌跡の方程式は$\boxed{\ \ エ\ \ }$である。
$(\textrm{ii})$点Pの軌跡を境界線とする2つの領域のうち、点Aを含む領域と、
不等式$y \leqq \sqrt3|x+9|$の表す領域の共通部分の面積は$\boxed{\ \ オ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{1}}$(3)$xy$平面上において、点Pは2点$A(0,0),\ B(7,0)$に対して$AP:BP=3:4$
を満たす。
$(\textrm{i})$点Pの軌跡の方程式は$\boxed{\ \ エ\ \ }$である。
$(\textrm{ii})$点Pの軌跡を境界線とする2つの領域のうち、点Aを含む領域と、
不等式$y \leqq \sqrt3|x+9|$の表す領域の共通部分の面積は$\boxed{\ \ オ\ \ }$である。
2021慶應義塾大学薬学部過去問
数学「大学入試良問集」【19−1 三角関数のグラフと面積】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \leqq x \leqq 2\pi$における2つの関数$y=\cos\ x$と$y=\sin2x$について、次の各問いに答えよ。
(1)2つの関数のグラフの交点の$x$座標をすべて求めよ。
(2)2つの関数のグラフの概形をかけ。
(3)2つの関数のグラフだけによって囲まれている部分の面積を求めよ。
この動画を見る
$0 \leqq x \leqq 2\pi$における2つの関数$y=\cos\ x$と$y=\sin2x$について、次の各問いに答えよ。
(1)2つの関数のグラフの交点の$x$座標をすべて求めよ。
(2)2つの関数のグラフの概形をかけ。
(3)2つの関数のグラフだけによって囲まれている部分の面積を求めよ。
福田の数学〜慶應義塾大学2021年薬学部第1問(2)〜解の差が1の2次方程式

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xの関数$f(x)=x^2+ax+b$がある。方程式$f(x)=0$の2つの実数解の差が
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が$\frac{13}{2}$であるとき、
aの値は$\boxed{\ \ イ\ \ }$、bの値は$\boxed{\ \ ウ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{1}}$(2)xの関数$f(x)=x^2+ax+b$がある。方程式$f(x)=0$の2つの実数解の差が
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が$\frac{13}{2}$であるとき、
aの値は$\boxed{\ \ イ\ \ }$、bの値は$\boxed{\ \ ウ\ \ }$である。
2021慶應義塾大学薬学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(1)〜ド・モアブルの定理

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
$(1)\ (1+i)^{10}$を展開して得られる複素数は$\boxed{\ \ ア\ \ }$である。ただし、iは虚数単位とする。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{1}}$
$(1)\ (1+i)^{10}$を展開して得られる複素数は$\boxed{\ \ ア\ \ }$である。ただし、iは虚数単位とする。
2021慶應義塾大学薬学部過去問
数学「大学入試良問集」【18−12 絶対値を含む定積分の最大最小】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x-\sin^2\theta|\sin\theta\ d\ \theta$の$0 \leqq x \leqq 1$における最大値と最小値を求めよ。
この動画を見る
関数$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x-\sin^2\theta|\sin\theta\ d\ \theta$の$0 \leqq x \leqq 1$における最大値と最小値を求めよ。
有名だけど、意外と狙いやすい大学3選~お買い得な大学、ぶっちゃけます【篠原好】

単元:
#その他#京都大学#京都大学#京都大学#北海道大学#京都大学#青山学院大学#青山学院大学
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
お買い得な大学、ぶっちゃけます
「有名だけど、意外と狙いやすい大学3選」について紹介しています。
この動画を見る
お買い得な大学、ぶっちゃけます
「有名だけど、意外と狙いやすい大学3選」について紹介しています。
福田の数学〜慶應義塾大学2021年総合政策学部第6問〜期待値から経営戦略を立てる

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$A社はB氏を報酬wで雇っている(wは正の実数)。A社の売り上げはB氏の努力水準に
依存しており、B氏の努力水準が低いとA社の売り上げは200だが、B氏の努力水準が
高い場合、A社の売り上げは70%の確率で500となり、30%の確率で200のままとなる。
そして、このことはB氏も知っている。ただし、B氏は努力水準を高める際に17.5の
苦痛を感じる。そのため、報酬wの下で努力水準を高めると、B氏の実質的な報酬は
w-17.5となってしまう。B氏は完全にテレワークをしており、B氏の努力水準を
A社が直接知ることはできないし、B氏が努力水準を高めるように強制することも
できない。すると$w \gt w-17.5$であることから、B氏は努力水準を高めないことが
合理的な行動となる。
以下では、不確実性下の意思決定を扱っているが(1),(2),(3)のいずれにおいても、
A社、B氏共に期待値の大小のみに関心があるものと仮定して解答すること。
(1)いま、A社は売上が500になったあときにはB氏の報酬を$w_1$に引き上げ、200のとき
には$w_0$に据え置くアイデアを思いついた。B氏が努力水準を高めるには、
$w_1 \geqq w_0+\boxed{\ \ アイウ\ \ }.\boxed{\ \ エオ\ \ }$である必要がある。
次に、B氏は、A社をやめても他の会社に報酬100で雇われることが可能であるとする。
(2)A社の利潤を売上からB氏への報酬を引いた残りだと単純化すると、$w_1$と$w_0$を適切に
定めることにより、B氏にA社をやめさせず、かつ努力水準を高めさせるためには、
A社の利潤の期待値を$\boxed{\ \ カキク\ \ }.\boxed{\ \ ケコ\ \ }$以下とする必要がある。
また、A社の利潤の期待値が最大化された時、$w_1:w_0=5:4$を満たす$w_0$の値は
$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$
以下では、B氏の$w_0$の値をこの$w_0$の値をこの$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$とする。
(3)実は、B氏の関心は報酬wそのものではなく、そこから得られる満足と解釈される
$10\sqrt w$であることが分かった。そのため、努力水準を高める際の苦痛17.5もこの値
から差し引かれ、努力水準を高めたときのB氏の満足は$10\sqrt w-17.5$となる。
B氏は(実質的な)報酬を最大化する人ではなく、満足を最大化する人だとしたとき、
B氏にA社をやめさせず、かつ努力水準を高めさせえるためには、$w_1 \geqq \boxed{\ \ タチツ\ \ }.\boxed{\ \ テト\ \ }$
2021慶應義塾大学総合政策学部過去問
この動画を見る
${\Large\boxed{6}}$A社はB氏を報酬wで雇っている(wは正の実数)。A社の売り上げはB氏の努力水準に
依存しており、B氏の努力水準が低いとA社の売り上げは200だが、B氏の努力水準が
高い場合、A社の売り上げは70%の確率で500となり、30%の確率で200のままとなる。
そして、このことはB氏も知っている。ただし、B氏は努力水準を高める際に17.5の
苦痛を感じる。そのため、報酬wの下で努力水準を高めると、B氏の実質的な報酬は
w-17.5となってしまう。B氏は完全にテレワークをしており、B氏の努力水準を
A社が直接知ることはできないし、B氏が努力水準を高めるように強制することも
できない。すると$w \gt w-17.5$であることから、B氏は努力水準を高めないことが
合理的な行動となる。
以下では、不確実性下の意思決定を扱っているが(1),(2),(3)のいずれにおいても、
A社、B氏共に期待値の大小のみに関心があるものと仮定して解答すること。
(1)いま、A社は売上が500になったあときにはB氏の報酬を$w_1$に引き上げ、200のとき
には$w_0$に据え置くアイデアを思いついた。B氏が努力水準を高めるには、
$w_1 \geqq w_0+\boxed{\ \ アイウ\ \ }.\boxed{\ \ エオ\ \ }$である必要がある。
次に、B氏は、A社をやめても他の会社に報酬100で雇われることが可能であるとする。
(2)A社の利潤を売上からB氏への報酬を引いた残りだと単純化すると、$w_1$と$w_0$を適切に
定めることにより、B氏にA社をやめさせず、かつ努力水準を高めさせるためには、
A社の利潤の期待値を$\boxed{\ \ カキク\ \ }.\boxed{\ \ ケコ\ \ }$以下とする必要がある。
また、A社の利潤の期待値が最大化された時、$w_1:w_0=5:4$を満たす$w_0$の値は
$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$
以下では、B氏の$w_0$の値をこの$w_0$の値をこの$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$とする。
(3)実は、B氏の関心は報酬wそのものではなく、そこから得られる満足と解釈される
$10\sqrt w$であることが分かった。そのため、努力水準を高める際の苦痛17.5もこの値
から差し引かれ、努力水準を高めたときのB氏の満足は$10\sqrt w-17.5$となる。
B氏は(実質的な)報酬を最大化する人ではなく、満足を最大化する人だとしたとき、
B氏にA社をやめさせず、かつ努力水準を高めさせえるためには、$w_1 \geqq \boxed{\ \ タチツ\ \ }.\boxed{\ \ テト\ \ }$
2021慶應義塾大学総合政策学部過去問
数学「大学入試良問集」【18−11 分数関数の極値と面積】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{x^2+ax+b}{x-1}$は$x=2$で極小値5をとる。
このとき、次の各問いに答えよ。
(1)$a,b$の値を求めよ。
(2)関数$y=f(x)$のグラフ上の$x=3$に対応する点における接線の方程式を求めよ。
(3)直線$x=2$、曲線$y=f(x)$および$(2)$で求めた接線で囲まれた部分の面積を求めよ。
この動画を見る
関数$f(x)=\displaystyle \frac{x^2+ax+b}{x-1}$は$x=2$で極小値5をとる。
このとき、次の各問いに答えよ。
(1)$a,b$の値を求めよ。
(2)関数$y=f(x)$のグラフ上の$x=3$に対応する点における接線の方程式を求めよ。
(3)直線$x=2$、曲線$y=f(x)$および$(2)$で求めた接線で囲まれた部分の面積を求めよ。
福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$(1)同じ人形$n$体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。
例えば$n=10$のとき、下図(※動画参照)のような並べ方がある。
ここで、$n$体の人形の並べ方の総数を$a_n$とすると
$a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。
その並べ方の総数を$b_n$とすると
$b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
2021慶應義塾大学整合政策学部過去問
この動画を見る
${\Large\boxed{5}}$(1)同じ人形$n$体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。
例えば$n=10$のとき、下図(※動画参照)のような並べ方がある。
ここで、$n$体の人形の並べ方の総数を$a_n$とすると
$a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。
その並べ方の総数を$b_n$とすると
$b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
2021慶應義塾大学整合政策学部過去問
不遇な大学3選:難関大なのに、世間の評価が微妙な大学【篠原好】

単元:
#一橋大学#東京工業大学#慶應義塾大学#一橋大学#慶應義塾大学#慶應義塾大学#慶應義塾大学
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
世間の評価が微妙な大学
「難関大なのに不遇な大学3選」について紹介しています。
この動画を見る
世間の評価が微妙な大学
「難関大なのに不遇な大学3選」について紹介しています。
福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$a
aを正の実数、bを1より大きい実数としたとき、放物線$y=-ax^2+b$が、
下図(※動画参照)のように原点を中心とした半径1の円$x^2+y^2=1$と2箇所で
接している。(すなわち共有点において共通の接線を持つ)
(1)一般に、$b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}$である。
(2)特に、$a=\frac{\sqrt2}{2}$とすると、放物線と円の接点は
$(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})$
であり、円と放物線に囲まれた上図の斜線部の面積は
$\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}$となる。
2021慶應義塾大学総合政策学部過去問
この動画を見る
${\Large\boxed{4}}$a
aを正の実数、bを1より大きい実数としたとき、放物線$y=-ax^2+b$が、
下図(※動画参照)のように原点を中心とした半径1の円$x^2+y^2=1$と2箇所で
接している。(すなわち共有点において共通の接線を持つ)
(1)一般に、$b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}$である。
(2)特に、$a=\frac{\sqrt2}{2}$とすると、放物線と円の接点は
$(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})$
であり、円と放物線に囲まれた上図の斜線部の面積は
$\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}$となる。
2021慶應義塾大学総合政策学部過去問
