実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
【数Ⅰ】【数と式】根号を含む計算 ※問題文は概要欄
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle \frac{\sqrt{2}}{\sqrt{2}-1}$の整数部分をa、小数部分をbとする。
次の式の値を求めよ。
(1)$a$ (2)$b$ (3)$a+b+b^2$
次の各場合について、$\sqrt{x^2-10x+25}$ をxの多項式で表せ。
(1)x≧5 (2)x<5
この動画を見る
$\displaystyle \frac{\sqrt{2}}{\sqrt{2}-1}$の整数部分をa、小数部分をbとする。
次の式の値を求めよ。
(1)$a$ (2)$b$ (3)$a+b+b^2$
次の各場合について、$\sqrt{x^2-10x+25}$ をxの多項式で表せ。
(1)x≧5 (2)x<5
【数Ⅰ】【数と式】平方根の式の値 ※問題文は概要欄
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x=\dfrac{\sqrt{ 5 }+2}{\sqrt{ 5 }-2}$ , $y=\dfrac{\sqrt{ 5 }-2}{\sqrt{ 5 }+2}$
のとき, 次の式の値を求めよ。
(1) $x+y$ (2) $xy$ (3) $x^2y+xy^2 $
(4) $x^2+y^2$ (5) $x^3+y^3$
$x=\sqrt{ 2 }-1$
のとき, 次の式の値を求めよ。
(1) $x+\dfrac{1}{x}$ (2) $x^2+\dfrac{1}{x^2}$ (3) $x^3+\dfrac{1}{x^3}$
(4) $x^4+\dfrac{1}{x^4}$ (5) $x^5+\dfrac{1}{x^5}$
この動画を見る
$x=\dfrac{\sqrt{ 5 }+2}{\sqrt{ 5 }-2}$ , $y=\dfrac{\sqrt{ 5 }-2}{\sqrt{ 5 }+2}$
のとき, 次の式の値を求めよ。
(1) $x+y$ (2) $xy$ (3) $x^2y+xy^2 $
(4) $x^2+y^2$ (5) $x^3+y^3$
$x=\sqrt{ 2 }-1$
のとき, 次の式の値を求めよ。
(1) $x+\dfrac{1}{x}$ (2) $x^2+\dfrac{1}{x^2}$ (3) $x^3+\dfrac{1}{x^3}$
(4) $x^4+\dfrac{1}{x^4}$ (5) $x^5+\dfrac{1}{x^5}$
【数Ⅰ】【数と式】平方根の近似値 ※問題文は概要欄
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt{2}=1.4142$, $\sqrt{3}=1.7321$
とするとき, 分母の有理化を利用して, 次の値を求めよ。
(1) $\dfrac{10}{\sqrt{3}+\sqrt{2}}$ (2) $\dfrac{1}{\sqrt{12}-\sqrt{2}}$
$x=1-\sqrt{5}$
のとき, 次の式の値を求めよ。
(1) $x^2-2x-4$ (2) $x^3-2x^2$
この動画を見る
$\sqrt{2}=1.4142$, $\sqrt{3}=1.7321$
とするとき, 分母の有理化を利用して, 次の値を求めよ。
(1) $\dfrac{10}{\sqrt{3}+\sqrt{2}}$ (2) $\dfrac{1}{\sqrt{12}-\sqrt{2}}$
$x=1-\sqrt{5}$
のとき, 次の式の値を求めよ。
(1) $x^2-2x-4$ (2) $x^3-2x^2$
【数Ⅰ】【数と式】平方根の計算 ※問題文は概要欄
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の計算をせよ。
(1) $(1+\sqrt{ 2 }-\sqrt{ 3 })^2$
(2)$(3-\sqrt{ 2 }-\sqrt{ 11 })(3-\sqrt{ 2 }+\sqrt{ 11 })$
次の計算をせよ。
(1) $\displaystyle \frac{3\sqrt{ 5 }-5\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}+\displaystyle \frac{3\sqrt{ 5 }+4\sqrt{ 3 }}{3\sqrt{ 5 }-4\sqrt{ 3 }}$
(2) $\displaystyle \frac{\sqrt{ 2 }-1}{\sqrt{ 2 }+1}+\displaystyle \frac{\sqrt{ 3 }-\sqrt{ 2 }}{\sqrt{ 3 }+\sqrt{ 2 }}+\displaystyle \frac{\sqrt{ 3 }+\sqrt{ 2 }}{2-\sqrt{ 3 }}$
次の計算をせよ。
(1) $\displaystyle \frac{1}{1+\sqrt{ 2 }-\sqrt{ 3 }}$
(2) $\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }+\sqrt{ 2 }}{\sqrt{ 5 }+\sqrt{ 3 }-\sqrt{ 2 }}$
(3) $\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }+\sqrt{ 5 }-\sqrt{ 7 }}+\displaystyle \frac{\sqrt{ 2 }-\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }-\sqrt{ 5 }-\sqrt{ 7 }}$
この動画を見る
次の計算をせよ。
(1) $(1+\sqrt{ 2 }-\sqrt{ 3 })^2$
(2)$(3-\sqrt{ 2 }-\sqrt{ 11 })(3-\sqrt{ 2 }+\sqrt{ 11 })$
次の計算をせよ。
(1) $\displaystyle \frac{3\sqrt{ 5 }-5\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}+\displaystyle \frac{3\sqrt{ 5 }+4\sqrt{ 3 }}{3\sqrt{ 5 }-4\sqrt{ 3 }}$
(2) $\displaystyle \frac{\sqrt{ 2 }-1}{\sqrt{ 2 }+1}+\displaystyle \frac{\sqrt{ 3 }-\sqrt{ 2 }}{\sqrt{ 3 }+\sqrt{ 2 }}+\displaystyle \frac{\sqrt{ 3 }+\sqrt{ 2 }}{2-\sqrt{ 3 }}$
次の計算をせよ。
(1) $\displaystyle \frac{1}{1+\sqrt{ 2 }-\sqrt{ 3 }}$
(2) $\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }+\sqrt{ 2 }}{\sqrt{ 5 }+\sqrt{ 3 }-\sqrt{ 2 }}$
(3) $\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }+\sqrt{ 5 }-\sqrt{ 7 }}+\displaystyle \frac{\sqrt{ 2 }-\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }-\sqrt{ 5 }-\sqrt{ 7 }}$
【数Ⅰ】【数と式】循環小数と絶対値 ※問題文は概要欄
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の分数を小数で表したとき、[ ]内の数字を求めよ。
(1) $\frac{11}{101}$ (2) $\frac{9}{41}$
x=-4,-1,2,5 のそれぞれについて、次の式の値を求めよ。
(1)|-x| (2)|x+1| (3)|1-2x|+|x-1|
この動画を見る
次の分数を小数で表したとき、[ ]内の数字を求めよ。
(1) $\frac{11}{101}$ (2) $\frac{9}{41}$
x=-4,-1,2,5 のそれぞれについて、次の式の値を求めよ。
(1)|-x| (2)|x+1| (3)|1-2x|+|x-1|
これできる?
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
これできる?
※問題文は動画内参照
この動画を見る
これできる?
※問題文は動画内参照
#福島大学2024#元高校教員
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
ますただ
問題文全文(内容文):
$\sqrt{ 2023\times2025+1 }$の値を求めよ。
出典:2024年福島大学
この動画を見る
$\sqrt{ 2023\times2025+1 }$の値を求めよ。
出典:2024年福島大学
大学入試問題#901「基本だけど初手大事」 #電気通信大学(2024)
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \sqrt{ 2-\sqrt{ x} }$ $dx$
出典:2024年電気通信大学
この動画を見る
$\displaystyle \int_{0}^{4} \sqrt{ 2-\sqrt{ x} }$ $dx$
出典:2024年電気通信大学
福田のおもしろ数学174〜ルートの付いた数値の計算
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\left(\frac{\sqrt{39}+\sqrt 3}{\sqrt{12}}\right)^7$ を計算してください。
この動画を見る
$\displaystyle\left(\frac{\sqrt{39}+\sqrt 3}{\sqrt{12}}\right)^7$ を計算してください。
福田のおもしろ数学173〜多重のルートで示される数
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#鹿児島県公立高校入試
指導講師:
福田次郎
問題文全文(内容文):
$\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{...}}}}$ を求めなさい。
この動画を見る
$\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{...}}}}$ を求めなさい。
#自治医科大(2015)
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{1}{1+\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }+\sqrt{ 5 }}+\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 7 }}+\displaystyle \frac{1}{\sqrt{ 7 }+\sqrt{ 9 }}$
出典:2015年自治医科大学
この動画を見る
$\displaystyle \frac{1}{1+\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }+\sqrt{ 5 }}+\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 7 }}+\displaystyle \frac{1}{\sqrt{ 7 }+\sqrt{ 9 }}$
出典:2015年自治医科大学
福田のおもしろ数学156〜ルートが整数となる条件と整数解
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$n$が整数の時、$\sqrt{n^2-8n+1}$ が整数となる最大の$n$を求めよ。
この動画を見る
$n$が整数の時、$\sqrt{n^2-8n+1}$ が整数となる最大の$n$を求めよ。
福田のおもしろ数学153〜分母に4つのルートが並ぶ式の有理化
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\frac{1}{\sqrt 2+\sqrt 3+\sqrt 5+\sqrt 6}$ の分母を有理化せよ。
この動画を見る
$\displaystyle\frac{1}{\sqrt 2+\sqrt 3+\sqrt 5+\sqrt 6}$ の分母を有理化せよ。
福田のおもしろ数学149〜cos1°は有理数か
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\cos 1°$ は有理数か?
この動画を見る
$\cos 1°$ は有理数か?
この手があったか!分母の有理化
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{21}{\sqrt 7}=$
この動画を見る
$\frac{21}{\sqrt 7}=$
福田のおもしろ数学145〜無理数の計算をうまくする方法
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\left(\frac{\sqrt 5+\sqrt 3-\sqrt 2}{\sqrt 2}\right)^4$+$\displaystyle\left(\frac{\sqrt 5-\sqrt 3+\sqrt 2}{\sqrt 2}\right)^4$ を計算せよ。
この動画を見る
$\displaystyle\left(\frac{\sqrt 5+\sqrt 3-\sqrt 2}{\sqrt 2}\right)^4$+$\displaystyle\left(\frac{\sqrt 5-\sqrt 3+\sqrt 2}{\sqrt 2}\right)^4$ を計算せよ。
分母の有理化
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{18}{\sqrt 6}$
この動画を見る
$\frac{18}{\sqrt 6}$
福田の数学〜慶應義塾大学2024年商学部第2問(1)〜無理数の小数第3位の数字と第4位の数字
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$
(1)$\sqrt{13}$を10進法の小数で表したとき小数第3位の数字は$\boxed{\ \ ア\ \ }$、小数第4位の数字は$\boxed{\ \ イ\ \ }$である。ただし、必要であれば$(3.606)^2$=$13.003236$ であることを用いてよい。
この動画を見る
$\Large\boxed{2}$
(1)$\sqrt{13}$を10進法の小数で表したとき小数第3位の数字は$\boxed{\ \ ア\ \ }$、小数第4位の数字は$\boxed{\ \ イ\ \ }$である。ただし、必要であれば$(3.606)^2$=$13.003236$ であることを用いてよい。
平方根の応用の良問 2度美味しい 函館ラ・サール
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt n$の整数部分が13
$\sqrt {5n}$が整数となる整数nは?
函館ラ・サール高等学校
この動画を見る
$\sqrt n$の整数部分が13
$\sqrt {5n}$が整数となる整数nは?
函館ラ・サール高等学校
平方根と式の値 京都橘 2024
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=2\sqrt 5 \\
a-b=-2\sqrt 3
\end{array}
\right.
\end{eqnarray}
$a^2+b^2=?$
2024京都橘大学
この動画を見る
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=2\sqrt 5 \\
a-b=-2\sqrt 3
\end{array}
\right.
\end{eqnarray}
$a^2+b^2=?$
2024京都橘大学
平方根 法政大学高校
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(a-2 \sqrt 2)(4+3 \sqrt 2) = \sqrt 2b$となる整数$a,b$を求めよ
法政大学高等学校
この動画を見る
$(a-2 \sqrt 2)(4+3 \sqrt 2) = \sqrt 2b$となる整数$a,b$を求めよ
法政大学高等学校
これ全部わかる?
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
①$1^0$
②$\sqrt[ 3 ]{ 27 }$
③$2^2$
④$7-1$
⑤$\sqrt{ 49 }$
⑥$2^3$
⑦$\sqrt{ 81 }$
⑧$5+5$
⑨$\sqrt{ 144 }$
この動画を見る
①$1^0$
②$\sqrt[ 3 ]{ 27 }$
③$2^2$
④$7-1$
⑤$\sqrt{ 49 }$
⑥$2^3$
⑦$\sqrt{ 81 }$
⑧$5+5$
⑨$\sqrt{ 144 }$
平方根の計算 2024慶應義塾
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1}{(1+\sqrt 2+\sqrt 3)^2}+\frac{1}{(1+\sqrt 2-\sqrt 3)^2}$
解いてみよ
慶応義塾大学2024
この動画を見る
$\frac{1}{(1+\sqrt 2+\sqrt 3)^2}+\frac{1}{(1+\sqrt 2-\sqrt 3)^2}$
解いてみよ
慶応義塾大学2024
絶対値と式の値 岡山理科大
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x-\frac{1}{x}=2$
$|x+\frac{1}{x}|=?$
岡山理科大学
この動画を見る
$x-\frac{1}{x}=2$
$|x+\frac{1}{x}|=?$
岡山理科大学
分母の有理化しなくていい。式の値 関西大
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a+b=3 , ab=1 ,a > b
$\frac{\sqrt a - \sqrt b}{\sqrt a + \sqrt b}=?$
関西大学
この動画を見る
a+b=3 , ab=1 ,a > b
$\frac{\sqrt a - \sqrt b}{\sqrt a + \sqrt b}=?$
関西大学
#62.5 #数検1級1次 #有理化 #Shorts
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 2 }}{1+\sqrt{ 2 }+\sqrt{ 3 }}$を有理化せよ
出典:数検1級1次
この動画を見る
$\displaystyle \frac{\sqrt{ 2 }}{1+\sqrt{ 2 }+\sqrt{ 3 }}$を有理化せよ
出典:数検1級1次
福田のおもしろ数学090〜絶対値の付いた方程式が表す点の軌跡
単元:
#数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
|$x^2$+$y^2$-1|+|$x^2$-$y^2$|=|$2x^2$-1| を満たす点($x$,$y$)の軌跡を図示せよ。
この動画を見る
|$x^2$+$y^2$-1|+|$x^2$-$y^2$|=|$2x^2$-1| を満たす点($x$,$y$)の軌跡を図示せよ。
よくある整数問題だけど有理数という言葉で戸惑うかもしれない、そんな問題 2024 大阪府
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xを有理数とする
$\frac{35}{12}x$と$\frac{21}{20}x$の値がともに自然数となる
最も小さいxの値を求めよ
2024大阪府
この動画を見る
xを有理数とする
$\frac{35}{12}x$と$\frac{21}{20}x$の値がともに自然数となる
最も小さいxの値を求めよ
2024大阪府
【短時間でポイントチェック!!】絶対値を含む定積分〔現役講師解説、数学〕
単元:
#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$\int_1^3{|x^2-4|}dx$
この動画を見る
$\int_1^3{|x^2-4|}dx$
2024早稲田(教育)循環小数を2進法で表せ
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{4}{9}$を2進法の循環小数で表せ
出典:2024年早稲田大学教育学部過去問
この動画を見る
$\displaystyle \frac{4}{9}$を2進法の循環小数で表せ
出典:2024年早稲田大学教育学部過去問