実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
すっきり、あっさり
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ z=1+\sqrt[5]{2}+\sqrt[5]{4}+\sqrt[5]{8}+\sqrt[5]{16}$である.
$ \left(1+\dfrac{1}{z}\right)^{50}$の値を求めよ.
この動画を見る
$ z=1+\sqrt[5]{2}+\sqrt[5]{4}+\sqrt[5]{8}+\sqrt[5]{16}$である.
$ \left(1+\dfrac{1}{z}\right)^{50}$の値を求めよ.
3乗根を外すだけ
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
3乗根を外せ.
$\sqrt[3]{\dfrac{10-7\sqrt2}{10+7\sqrt2}}$
この動画を見る
3乗根を外せ.
$\sqrt[3]{\dfrac{10-7\sqrt2}{10+7\sqrt2}}$
バサバサ消えるやつ 栄東高校
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1}{1+\sqrt 2} + \frac{1}{\sqrt 2+\sqrt 3} + \frac{1}{\sqrt 3+\sqrt 4} +
\cdots +\frac{1}{\sqrt {20}+\sqrt {21}}=?$
栄東高等学校
この動画を見る
$\frac{1}{1+\sqrt 2} + \frac{1}{\sqrt 2+\sqrt 3} + \frac{1}{\sqrt 3+\sqrt 4} +
\cdots +\frac{1}{\sqrt {20}+\sqrt {21}}=?$
栄東高等学校
平方根の計算 愛知県令和4年度 2022 入試問題100題解説87問目!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\sqrt 5 - \sqrt 3 )(\sqrt {20} + \sqrt {12} )$
2022愛知県
この動画を見る
$(\sqrt 5 - \sqrt 3 )(\sqrt {20} + \sqrt {12} )$
2022愛知県
ざ・息抜き
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る
$\sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 0 \leqq a \leqq b \leqq 1を満たすa,bに対し、関数\\
f(x)=|x(x-1)|+|(x-a)(x-b)|\\
を考える。xが実数の範囲を動くとき、f(x)は最小値mをもつとする。\\
(1)x \lt 0およびx \gt 1ではf(x) \gt mとなることを示せ。\\
(2)m=f(0)またはm=f(1)であることを示せ。\\
(3)a,bが0 \leqq a \leqq b \leqq 1を満たして動くとき、mの最大値を求めよ。
\end{eqnarray}
2022北海道大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ 0 \leqq a \leqq b \leqq 1を満たすa,bに対し、関数\\
f(x)=|x(x-1)|+|(x-a)(x-b)|\\
を考える。xが実数の範囲を動くとき、f(x)は最小値mをもつとする。\\
(1)x \lt 0およびx \gt 1ではf(x) \gt mとなることを示せ。\\
(2)m=f(0)またはm=f(1)であることを示せ。\\
(3)a,bが0 \leqq a \leqq b \leqq 1を満たして動くとき、mの最大値を求めよ。
\end{eqnarray}
2022北海道大学理系過去問
これ解ける?
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{ 2022 \sqrt{ 2021 \times 2019 + 1 + 1 } }$
値を求めよ
この動画を見る
$\sqrt{ 2022 \sqrt{ 2021 \times 2019 + 1 + 1 } }$
値を求めよ
大阪大2022
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.
2022阪大過去問
この動画を見る
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.
2022阪大過去問
令和四年都立国立高校一問目 平方根の計算 2022 入試問題100題解説76問目!
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})^2
+(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})
-(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})^2
$
2022都立国立高等学校
この動画を見る
$(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})^2
+(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})
-(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})^2
$
2022都立国立高等学校
3乗根をはずせ
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
3乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
この動画を見る
3乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
2022東海大(医)ドモアブルの定理の基本
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(\sqrt{2+\sqrt2}+\sqrt{2-\sqrt2i})^8$を解け.
2022東海大(医)過去問
この動画を見る
$(\sqrt{2+\sqrt2}+\sqrt{2-\sqrt2i})^8$を解け.
2022東海大(医)過去問
小数部分 立教新座 2022 入試問題解説 28問目 西大和学園も全く同じ問題でした。
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正の数p、その小数部分をbとする
$p^2+b^2 = 44$
p=?
2022立教新座高等学校
この動画を見る
正の数p、その小数部分をbとする
$p^2+b^2 = 44$
p=?
2022立教新座高等学校
2022乗 昭和学院秀英2022入試問題解説12問目
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\sqrt 5 + 2)^{2022}(\sqrt 5 -2)^{2020}+(\sqrt 5 +2)^{2020}(\sqrt 5 -2)^{2022}$
2022昭和学院秀英高等学校
この動画を見る
$(\sqrt 5 + 2)^{2022}(\sqrt 5 -2)^{2020}+(\sqrt 5 +2)^{2020}(\sqrt 5 -2)^{2022}$
2022昭和学院秀英高等学校
無理数の2022乗の1の位の数
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(2+\sqrt5)^{2022}$の1の位の数を求めよ.
この動画を見る
$(2+\sqrt5)^{2022}$の1の位の数を求めよ.
基本問題
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{2022+a^2+2a}$が整数となる自然数$a$を求めよ.
この動画を見る
$\sqrt{2022+a^2+2a}$が整数となる自然数$a$を求めよ.
二重根号の方程式
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解$\sqrt{2-\sqrt{x+2}}=x$を求めよ.
この動画を見る
実数解$\sqrt{2-\sqrt{x+2}}=x$を求めよ.
ただ二重根号を外すだけ
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{2065+180\sqrt{10}}$
これを求めよ.
この動画を見る
$\sqrt{2065+180\sqrt{10}}$
これを求めよ.
こう見えても慶應義塾
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数A#数と式#場合の数と確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
絶対値が2になる数と49の平方根の和は何通り?
慶應義塾高等学校
この動画を見る
絶対値が2になる数と49の平方根の和は何通り?
慶應義塾高等学校
4乗根の分母の有理化
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
分母の有理化をせよ.
$\dfrac{1}{\sqrt[4]{8}+\sqrt2+\sqrt[4]{2}+1}$
この動画を見る
分母の有理化をせよ.
$\dfrac{1}{\sqrt[4]{8}+\sqrt2+\sqrt[4]{2}+1}$
単位円周上には無限の有理点
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
単位円周上に$x$座標,$y$座標ともに有理数である点は無限に存在することを示せ.
この動画を見る
単位円周上に$x$座標,$y$座標ともに有理数である点は無限に存在することを示せ.
平方根 小数部分 成城学園
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2 \sqrt 3$の小数部分をaとするとき
$a^2+6a-16=?$
成城学園高等学校
この動画を見る
$2 \sqrt 3$の小数部分をaとするとき
$a^2+6a-16=?$
成城学園高等学校
高校入試だけど二重根号
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=\sqrt{6+\sqrt{11}} , y=\sqrt{6-\sqrt{11}} $
$(x+y)^2 = ?$
慶應義塾高等学校
この動画を見る
$x=\sqrt{6+\sqrt{11}} , y=\sqrt{6-\sqrt{11}} $
$(x+y)^2 = ?$
慶應義塾高等学校
【数学】平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方に関して解説していきます.
この動画を見る
平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方に関して解説していきます.
無限に続く3乗根
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3\sqrt{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2・・・・・・}}}}}$
$(a)2$
$(b)\sqrt2$
$(c)\sqrt[3]{4}$
これを解け.
この動画を見る
$3\sqrt{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2・・・・・・}}}}}$
$(a)2$
$(b)\sqrt2$
$(c)\sqrt[3]{4}$
これを解け.
【高校数学】摂南大学の過去問演習~代入の問題~【大学受験】
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
摂南大学の過去問演習
この動画を見る
摂南大学の過去問演習
方程式
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$x^5+\dfrac{1}{x^5}=\dfrac{205}{16}\left(x+\dfrac{1}{x}\right)$
この動画を見る
実数解を求めよ.
$x^5+\dfrac{1}{x^5}=\dfrac{205}{16}\left(x+\dfrac{1}{x}\right)$
超絶良問 どっちがでかい?その差僅か0.0005
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\sqrt{2022}+\sqrt{2052}$ vs $\sqrt{2032}+\sqrt{2042}$
この動画を見る
どちらが大きいか?
$\sqrt{2022}+\sqrt{2052}$ vs $\sqrt{2032}+\sqrt{2042}$
単なる計算問題
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{99910000+\dfrac{81}{4}}$
これを解け.
この動画を見る
$\sqrt{99910000+\dfrac{81}{4}}$
これを解け.
工夫して簡単に!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを簡単にせよ.
$\dfrac{\sqrt{21}+\sqrt{33}+\sqrt{77}+7}{\sqrt3+2\sqrt 7+\sqrt{11}}$
この動画を見る
これを簡単にせよ.
$\dfrac{\sqrt{21}+\sqrt{33}+\sqrt{77}+7}{\sqrt3+2\sqrt 7+\sqrt{11}}$
負の数の三乗根
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
${}^3 \sqrt 2 + {}^3 \sqrt {-2}$
この動画を見る
${}^3 \sqrt 2 + {}^3 \sqrt {-2}$