数と式
【数学Ⅰ/高1の予習】3乗の展開公式
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を展開せよ。
(1)$(x+2)^3$
(2)$(3x-1)^3$
(3)$(2a-3b)^3$
この動画を見る
次の式を展開せよ。
(1)$(x+2)^3$
(2)$(3x-1)^3$
(3)$(2a-3b)^3$
【基礎から解説】展開の公式を利用する因数分解(高校数学Ⅰ)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を因数分解せよ。
(1)$x^3+27$
(2)$16x^3-2y^3$
(3)$x^3-9x^2+27x-27$
この動画を見る
次の式を因数分解せよ。
(1)$x^3+27$
(2)$16x^3-2y^3$
(3)$x^3-9x^2+27x-27$
【数学Ⅰ/高1の予習】展開公式
【わかりやすく】たすきがけを使う因数分解を解説!(高校数学Ⅰ)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を因数分解せよ。
(1)$6x^2+7x+2$
(2)$2x^2+x-6$
(3)$3x^2-10xy+8y^2$
この動画を見る
次の式を因数分解せよ。
(1)$6x^2+7x+2$
(2)$2x^2+x-6$
(3)$3x^2-10xy+8y^2$
素数
単元:
#数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ n^4-11n^2+49 $が素数となる整数 $ n$を求めよ.
この動画を見る
$ n^4-11n^2+49 $が素数となる整数 $ n$を求めよ.
「6÷2(1+2)」簡単そうで解けない...?
数学界をにぎわした問題
ルートを含む不等式 自然数の個数 明大明治 令和4年度 2022 入試問題100題解説100問目!
単元:
#数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
nは自然数
$3n-1 \leqq \sqrt x \leqq 3n$を満たす自然数xは2022個ある。
n=?
2022明治大学付属明治高等学校
この動画を見る
nは自然数
$3n-1 \leqq \sqrt x \leqq 3n$を満たす自然数xは2022個ある。
n=?
2022明治大学付属明治高等学校
ただの因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+$
$x^3+x^2+x+1$
これを因数分解せよ.(実数係数)
この動画を見る
$ x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+$
$x^3+x^2+x+1$
これを因数分解せよ.(実数係数)
ただの因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+$
$x^3+x^2+x+1$
これを因数分解せよ.(実数係数)
この動画を見る
$ x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+$
$x^3+x^2+x+1$
これを因数分解せよ.(実数係数)
【わかりやすく】高校で習う展開公式②(高校数学Ⅰ)
連立2元9次方程式
単元:
#数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4y^5+x^5y^4=810 \\
x^3y^6+x^6y^3=945
\end{array}
\right.
\end{eqnarray}$
実数解を求めよ.
この動画を見る
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4y^5+x^5y^4=810 \\
x^3y^6+x^6y^3=945
\end{array}
\right.
\end{eqnarray}$
実数解を求めよ.
平方根の計算 愛知県令和4年度 2022 入試問題100題解説87問目!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\sqrt 5 - \sqrt 3 )(\sqrt {20} + \sqrt {12} )$
2022愛知県
この動画を見る
$(\sqrt 5 - \sqrt 3 )(\sqrt {20} + \sqrt {12} )$
2022愛知県
【わかりやすく】高校で習う展開公式①(高校数学Ⅰ)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を展開せよ。
(1)$(x+2)(x^2-2x+4)$
(2)$(x-3y)(x^2+3xy+9y^2)$
この動画を見る
次の式を展開せよ。
(1)$(x+2)(x^2-2x+4)$
(2)$(x-3y)(x^2+3xy+9y^2)$
【ゼロからわかる】3乗の展開公式(高校数学Ⅰ)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を展開せよ。
(1)$(x+2)^3$
(2)$(3x-1)^3$
(3)$(2a-3b)^3$
この動画を見る
次の式を展開せよ。
(1)$(x+2)^3$
(2)$(3x-1)^3$
(3)$(2a-3b)^3$
ざ・息抜き
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る
$\sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 0 \leqq a \leqq b \leqq 1を満たすa,bに対し、関数\\
f(x)=|x(x-1)|+|(x-a)(x-b)|\\
を考える。xが実数の範囲を動くとき、f(x)は最小値mをもつとする。\\
(1)x \lt 0およびx \gt 1ではf(x) \gt mとなることを示せ。\\
(2)m=f(0)またはm=f(1)であることを示せ。\\
(3)a,bが0 \leqq a \leqq b \leqq 1を満たして動くとき、mの最大値を求めよ。
\end{eqnarray}
2022北海道大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ 0 \leqq a \leqq b \leqq 1を満たすa,bに対し、関数\\
f(x)=|x(x-1)|+|(x-a)(x-b)|\\
を考える。xが実数の範囲を動くとき、f(x)は最小値mをもつとする。\\
(1)x \lt 0およびx \gt 1ではf(x) \gt mとなることを示せ。\\
(2)m=f(0)またはm=f(1)であることを示せ。\\
(3)a,bが0 \leqq a \leqq b \leqq 1を満たして動くとき、mの最大値を求めよ。
\end{eqnarray}
2022北海道大学理系過去問
【わかりやすく解説】中学の「展開」をおさらい!
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を展開せよ
(1)$(x+3)(2x-1)$
(2)$(x+3y)(x-3y)$
(3)$(x-5y)^2$
この動画を見る
次の式を展開せよ
(1)$(x+3)(2x-1)$
(2)$(x+3y)(x-3y)$
(3)$(x-5y)^2$
これ解ける?
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{ 2022 \sqrt{ 2021 \times 2019 + 1 + 1 } }$
値を求めよ
この動画を見る
$\sqrt{ 2022 \sqrt{ 2021 \times 2019 + 1 + 1 } }$
値を求めよ
【本当に苦手な人へ8分だけ時間をください!!】因数分解の基礎を現役塾講師が簡単に解説!〔現役塾講師解説、数学〕
大阪大2022
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.
2022阪大過去問
この動画を見る
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.
2022阪大過去問
無題
単元:
#数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ n^2-331n-2022$が$101$の倍数となる
$ 2$桁の自然数$ n$を$1$つ見つけよ.
この動画を見る
$ n^2-331n-2022$が$101$の倍数となる
$ 2$桁の自然数$ n$を$1$つ見つけよ.
令和四年都立国立高校一問目 平方根の計算 2022 入試問題100題解説76問目!
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})^2
+(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})
-(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})^2
$
2022都立国立高等学校
この動画を見る
$(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})^2
+(\frac{\sqrt 5 + \sqrt 3}{\sqrt 2})(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})
-(\frac{\sqrt 5 - \sqrt 3}{\sqrt 2})^2
$
2022都立国立高等学校
福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ Oを原点とする座標平面上で考える。座標平面上の2点S(x_1,y_1),T(x_2,y_2)\\
に対し、点Sが点Tから十分離れているとは、\\
|x_1-x_2| \geqq 1 または |y_1-y_2| \geqq 1\\
が成り立つことと定義する。\\
不等式\\
0 \leqq x \leqq 3, 0 \leqq y \leqq 3\\
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。\\
さらに、次の条件(\textrm{i}),(\textrm{ii})を共に満たす点Pをとる。\\
(\textrm{i})点Pは領域Dの点であり、かつ、放物線y=x^2上にある。\\
(\textrm{ii})点Pは、3点O,A,Bのいずれからも十分離れている。\\
点Pのx座標をaとする。\\
(1)aのとりうる値の範囲を求めよ。\\
(2)次の条件(\textrm{iii}),(\textrm{iv})をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。\\
(\textrm{iii})点Qは領域Dの点である。\\
(\textrm{iv})点Qは、4点O,A,B,Pのいずれからも十分離れている。\\
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。
\end{eqnarray}
2022東京大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ Oを原点とする座標平面上で考える。座標平面上の2点S(x_1,y_1),T(x_2,y_2)\\
に対し、点Sが点Tから十分離れているとは、\\
|x_1-x_2| \geqq 1 または |y_1-y_2| \geqq 1\\
が成り立つことと定義する。\\
不等式\\
0 \leqq x \leqq 3, 0 \leqq y \leqq 3\\
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。\\
さらに、次の条件(\textrm{i}),(\textrm{ii})を共に満たす点Pをとる。\\
(\textrm{i})点Pは領域Dの点であり、かつ、放物線y=x^2上にある。\\
(\textrm{ii})点Pは、3点O,A,Bのいずれからも十分離れている。\\
点Pのx座標をaとする。\\
(1)aのとりうる値の範囲を求めよ。\\
(2)次の条件(\textrm{iii}),(\textrm{iv})をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。\\
(\textrm{iii})点Qは領域Dの点である。\\
(\textrm{iv})点Qは、4点O,A,B,Pのいずれからも十分離れている。\\
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。
\end{eqnarray}
2022東京大学理系過去問
xの2022乗の値
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \left(x+\dfrac{1}{x}\right)^2=3$のとき,$ x^{2022}$の値を求めよ.
この動画を見る
$ \left(x+\dfrac{1}{x}\right)^2=3$のとき,$ x^{2022}$の値を求めよ.
小数第2022位の数は?!
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ (6+\sqrt{37})^{2023}$の小数第$2022$位数は?
この動画を見る
$ (6+\sqrt{37})^{2023}$の小数第$2022$位数は?
3乗根をはずせ
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3$乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
この動画を見る
$3$乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
3乗根をはずせ
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
3乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
この動画を見る
3乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
平方根&分数式の方程式
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$ \left(x-\dfrac{1}{x}\right)^{\frac{1}{2}}+\left(1-\dfrac{1}{x}\right)^{\frac{1}{2}}=x$
この動画を見る
これを解け.
$ \left(x-\dfrac{1}{x}\right)^{\frac{1}{2}}+\left(1-\dfrac{1}{x}\right)^{\frac{1}{2}}=x$
3次方程式の解の公式 順天堂大(医)
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$ x^3+9x+6=0$
*誘導あり
解には$ \omega^3=1$の$\omega$を用いる$(\omega\neq 1)$
順天堂大(医)過去問
この動画を見る
これを解け.
$ x^3+9x+6=0$
*誘導あり
解には$ \omega^3=1$の$\omega$を用いる$(\omega\neq 1)$
順天堂大(医)過去問