数と式
【数Ⅰ】数と式:因数分解:a³+b³+c³-3abcの因数分解の利用
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$を用いて、次の式を因数分解しよう。
$x^3+y^3-1+3xy$
この動画を見る
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$を用いて、次の式を因数分解しよう。
$x^3+y^3-1+3xy$
【数I】中高一貫校問題集3(数式・関数編)6:数と式:多項式:整式の減法の注意点
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
A=5x²-2xy+y²、B=-3x²+2xy-4y²であるとき、A-Bを計算しよう。
この動画を見る
A=5x²-2xy+y²、B=-3x²+2xy-4y²であるとき、A-Bを計算しよう。
【数Ⅰ】数と式:整式の加法と減法:整理してから代入する
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$A=2x^2+xy-3z、B=-3x^2+2xy+z、C=x^2-3xy+2z$であるとき、$2(2A+B-C)-(A+4A-C)$を計算しよう。
この動画を見る
$A=2x^2+xy-3z、B=-3x^2+2xy+z、C=x^2-3xy+2z$であるとき、$2(2A+B-C)-(A+4A-C)$を計算しよう。
福田の数学〜上智大学2021年TEAP利用文系第4問(1)〜条件の否定
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(1)関数$f(x)$に対する以下の条件(P)を考える。
$(P): f(x) \gt 3$を満たす5以上の自然数nが存在する。
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。
$(\textrm{a})f(n) \leqq 3$を満たす5以上の自然数nが存在する。
$(\textrm{b})f(n) \gt 3$を満たす5未満の自然数nが存在する。
$(\textrm{c})f(n) \leqq 3$を満たす5未満の自然数nが存在する。
$(\textrm{d})n$が5以上の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{e})n$が5未満の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{f})n$が5未満の自然数ならば$f(n) \gt 3$が成り立つ。
$(\textrm{g})f(n) \gt 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{h})f(n) \leqq 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{i})f(n) \leqq 3$が5未満の全ての自然数nに対して成り立つ。
2021上智大学文系過去問
この動画を見る
${\Large\boxed{4}}$(1)関数$f(x)$に対する以下の条件(P)を考える。
$(P): f(x) \gt 3$を満たす5以上の自然数nが存在する。
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。
$(\textrm{a})f(n) \leqq 3$を満たす5以上の自然数nが存在する。
$(\textrm{b})f(n) \gt 3$を満たす5未満の自然数nが存在する。
$(\textrm{c})f(n) \leqq 3$を満たす5未満の自然数nが存在する。
$(\textrm{d})n$が5以上の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{e})n$が5未満の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{f})n$が5未満の自然数ならば$f(n) \gt 3$が成り立つ。
$(\textrm{g})f(n) \gt 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{h})f(n) \leqq 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{i})f(n) \leqq 3$が5未満の全ての自然数nに対して成り立つ。
2021上智大学文系過去問
【数I】中高一貫校用問題集(数式・関数編)数と式:多項式:整式の減法の注意点
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$A=5x^2-2xy+y^2、B=-3x^2+2xy-4y^2$であるとき、$A-B$を計算しよう。
この動画を見る
$A=5x^2-2xy+y^2、B=-3x^2+2xy-4y^2$であるとき、$A-B$を計算しよう。
素因数分解3200021
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
素因数分解せよ.
$3200021$
ただし,素因数は3つである.
この動画を見る
素因数分解せよ.
$3200021$
ただし,素因数は3つである.
【数Ⅰ】中高一貫校問題集3(論理・確率編)10:集合と命題:集合:要素の決定
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
A={2,4,x-1},B={3,2x-y-1},C={2,2x+z-2}とする。
B⊂A、B=Cが成り立つとき、x,y,zの値を求めよう。
この動画を見る
A={2,4,x-1},B={3,2x-y-1},C={2,2x+z-2}とする。
B⊂A、B=Cが成り立つとき、x,y,zの値を求めよう。
【数Ⅰ】中高一貫校用問題集(論理・確率編)集合と命題:集合:要素の決定
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$A={2,4,x-1},B={3,2x-y-1},C={2,2x+z-2}$とする。
$B⊂A、B=C$が成り立つとき、x,y,zの値を求めよう。
この動画を見る
$A={2,4,x-1},B={3,2x-y-1},C={2,2x+z-2}$とする。
$B⊂A、B=C$が成り立つとき、x,y,zの値を求めよう。
千葉大 ドゥモアブルの定理
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
①$\alpha^6+\alpha^5+\alpha^4+\alpha^3+\alpha^2+\alpha$の値を求めよ.
②$(1-\alpha)(1-\alpha^2)(1-\alpha^3)\times(1-\alpha^4)(1-\alpha^5)$
$(1-\alpha^6)$の値を求めよ.
千葉大過去問
この動画を見る
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
①$\alpha^6+\alpha^5+\alpha^4+\alpha^3+\alpha^2+\alpha$の値を求めよ.
②$(1-\alpha)(1-\alpha^2)(1-\alpha^3)\times(1-\alpha^4)(1-\alpha^5)$
$(1-\alpha^6)$の値を求めよ.
千葉大過去問
早くも2022問題。視聴者が類題を作ってくれました
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を
$(x^{16}+1)(x^8+1)(x^4+1)(x^2+1)(x+1)$で割った余りを求めよ.
この動画を見る
$x^{2022}$を
$(x^{16}+1)(x^8+1)(x^4+1)(x^2+1)(x+1)$で割った余りを求めよ.
山梨大(医)整式の剰余
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2020}$を$x^2-x+1$で割った余りを求めよ.
2020山梨大(医)過去問
この動画を見る
$x^{2020}$を$x^2-x+1$で割った余りを求めよ.
2020山梨大(医)過去問
福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)実数全体で定義され、実数の値をとる関数$f(x)$に対する次の条件$p$を考える。
$p:「K以上の全ての実数xに対してf(x) \geqq 1」$が成り立つような実数Kが存在する。
$(\textrm{i})$次に挙げた関数$(\textrm{a})~(\textrm{d})$のそれぞれについて、pを満たすならばo、pを
満たさないならばxをマークせよ。
$(\textrm{a})f(x)=xe^{-x} (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x$
$(\textrm{ii})$次の条件がpの否定になるように、$\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }$のそれぞれの選択肢から、
あてはまるものを選べ。
・$「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }$実数に対して$\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }$
$\boxed{\ \ あ\ \ }$の選択肢$:(\textrm{a})K$以上の $(\textrm{b})K$未満の
$\boxed{\ \ い\ \ }$の選択肢:$(\textrm{a})$すべての $(\textrm{b})$ある
$\boxed{\ \ う\ \ }$の選択肢$:(\textrm{a})f(x) \geqq 1 (\textrm{b})f(x) \lt 1$
$\boxed{\ \ え\ \ }$の選択肢$:(\textrm{a})$どんな実数Kについても成り立つ $\\(\textrm{b})$成り立つような実数Kが存在する
$(\textrm{iii})$関数$f(x)$に対して、$g(x)=2f(x)$で関数$g(x)$を定める。次に挙げた命題$(\textrm{A})~(\textrm{D})$
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。
$(\textrm{A})f(x)$が$p$を満たすならば、$g(x)$も$p$を満たす。
$(\textrm{B})g(x)$が$p$を満たすならば、$f(x)$もpを満たす。
$(\textrm{C})f(x)$が$p$を満たさないならば、$g(x)$もpを満たさない。
$(\textrm{D})f(x)$がpを満たさないならば、$g(x)$も$p$を満たす。
2021上智大学理工学部過去問
この動画を見る
${\Large\boxed{2}}$(1)実数全体で定義され、実数の値をとる関数$f(x)$に対する次の条件$p$を考える。
$p:「K以上の全ての実数xに対してf(x) \geqq 1」$が成り立つような実数Kが存在する。
$(\textrm{i})$次に挙げた関数$(\textrm{a})~(\textrm{d})$のそれぞれについて、pを満たすならばo、pを
満たさないならばxをマークせよ。
$(\textrm{a})f(x)=xe^{-x} (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x$
$(\textrm{ii})$次の条件がpの否定になるように、$\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }$のそれぞれの選択肢から、
あてはまるものを選べ。
・$「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }$実数に対して$\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }$
$\boxed{\ \ あ\ \ }$の選択肢$:(\textrm{a})K$以上の $(\textrm{b})K$未満の
$\boxed{\ \ い\ \ }$の選択肢:$(\textrm{a})$すべての $(\textrm{b})$ある
$\boxed{\ \ う\ \ }$の選択肢$:(\textrm{a})f(x) \geqq 1 (\textrm{b})f(x) \lt 1$
$\boxed{\ \ え\ \ }$の選択肢$:(\textrm{a})$どんな実数Kについても成り立つ $\\(\textrm{b})$成り立つような実数Kが存在する
$(\textrm{iii})$関数$f(x)$に対して、$g(x)=2f(x)$で関数$g(x)$を定める。次に挙げた命題$(\textrm{A})~(\textrm{D})$
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。
$(\textrm{A})f(x)$が$p$を満たすならば、$g(x)$も$p$を満たす。
$(\textrm{B})g(x)$が$p$を満たすならば、$f(x)$もpを満たす。
$(\textrm{C})f(x)$が$p$を満たさないならば、$g(x)$もpを満たさない。
$(\textrm{D})f(x)$がpを満たさないならば、$g(x)$も$p$を満たす。
2021上智大学理工学部過去問
等式の変形 智弁和歌山
単元:
#数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xについて解け
$\frac{1}{x} - \frac{2}{xy} = 3y$
智弁学園和歌山高等学校
この動画を見る
xについて解け
$\frac{1}{x} - \frac{2}{xy} = 3y$
智弁学園和歌山高等学校
ただの計算
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを計算せよ.
$\left(\dfrac{4}{(\sqrt5+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}+1\right)^{48}$
この動画を見る
これを計算せよ.
$\left(\dfrac{4}{(\sqrt5+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}+1\right)^{48}$
福田のわかった数学〜高校2年生049〜領域(4)命題と領域
単元:
#数Ⅰ#数Ⅱ#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(4) 領域と命題
次の条件$(\textrm{A}),\ (\textrm{B})$は同値であることを示せ。
$(\textrm{A})\ |x+y| \leqq 1$かつ$|x-y| \leqq 1$
$(\textrm{B})\ |x|+|y| \leqq 1$
この動画を見る
数学$\textrm{II}$ 領域(4) 領域と命題
次の条件$(\textrm{A}),\ (\textrm{B})$は同値であることを示せ。
$(\textrm{A})\ |x+y| \leqq 1$かつ$|x-y| \leqq 1$
$(\textrm{B})\ |x|+|y| \leqq 1$
【数学Ⅰ】命題と集合 基本をザザッと
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
15の正の約数全体の集合をAとする。
(1)3____A
(2)5____A
(3)7____A
(4)1____A
(5)15____A
(6)6____A
(7)8____A
-----------------
(1)8以下の自然数全体の集合
(2){$x|-3 \leqq x \leqq 1,x$は整数}
この動画を見る
15の正の約数全体の集合をAとする。
(1)3____A
(2)5____A
(3)7____A
(4)1____A
(5)15____A
(6)6____A
(7)8____A
-----------------
(1)8以下の自然数全体の集合
(2){$x|-3 \leqq x \leqq 1,x$は整数}
簡単な計算問題
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\sqrt{\dfrac{2021^3-2019^3-2}{6}}$
この動画を見る
これを解け.
$\sqrt{\dfrac{2021^3-2019^3-2}{6}}$
福田のわかった数学〜高校2年生046〜領域(1)連立不等式の表す領域
単元:
#数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
xy\lt 1 \\
xy(x^2-y^2)(x^2+y^2-2)\gt 0
\end{array}
\right.
\end{eqnarray}$
の表す領域を図示せよ.
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
xy\lt 1 \\
xy(x^2-y^2)(x^2+y^2-2)\gt 0
\end{array}
\right.
\end{eqnarray}$
の表す領域を図示せよ.
ゆる言語学者 水野さん参上
福田の数学〜慶應義塾大学2021年看護医療学部第2問(3)〜絶対値の付いた2次不等式の解
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(3)aを正の定数とし、不等式
$|x^2-ax+3| \leqq 1$
の解を実数の範囲で考える。
0 $\lt a \lt \boxed{\ \ ナ\ \ }$のとき、この不等式の解は存在しない。
$\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }$のとき、この不等式の解は
ある実数$p,q$によって$p \leqq x \leqq q$と表される。
$a \gt \boxed{\ \ ニ\ \ }$のときこの不等式の解は$\boxed{\ \ ヌ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{2}}$(3)aを正の定数とし、不等式
$|x^2-ax+3| \leqq 1$
の解を実数の範囲で考える。
0 $\lt a \lt \boxed{\ \ ナ\ \ }$のとき、この不等式の解は存在しない。
$\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }$のとき、この不等式の解は
ある実数$p,q$によって$p \leqq x \leqq q$と表される。
$a \gt \boxed{\ \ ニ\ \ }$のときこの不等式の解は$\boxed{\ \ ヌ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
数学得意だよって天狗になっている中学生に解かせたい問題 ルートを外せ13
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{24n}$が整数となるような最小の整数nを求めよ。
大阪教育大学附属高等学校天王寺校舎
この動画を見る
$\sqrt{24n}$が整数となるような最小の整数nを求めよ。
大阪教育大学附属高等学校天王寺校舎
もっちゃんと数学
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\left(\dfrac{5^{\sqrt3}}{25}\right)^{\sqrt{7+4\sqrt3}}$を計算せよ.
この動画を見る
$\left(\dfrac{5^{\sqrt3}}{25}\right)^{\sqrt{7+4\sqrt3}}$を計算せよ.
数学 高校入試 平方根の計算
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{30^4-20^4-10^4} =$
東北学院高等学校
この動画を見る
$\sqrt{30^4-20^4-10^4} =$
東北学院高等学校
福田の数学〜慶應義塾大学2021年看護医療学部第1問(4)〜等比数列となる条件
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (4)数列$\left\{a_n\right\}$の階差数列を$\left\{b_n\right\}$とする。$\left\{b_n\right\}$が初項2、公比$\frac{1}{3}$の等比数列と
なるとき、$\left\{b_n\right\}$の一般項は$b_n=\boxed{\ \ オ\ \ }$である。また、$\left\{a_n\right\}$も等比数列に
なるならば、$a_1=\boxed{\ \ カ\ \ }$である。このとき$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ キ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{1}}$ (4)数列$\left\{a_n\right\}$の階差数列を$\left\{b_n\right\}$とする。$\left\{b_n\right\}$が初項2、公比$\frac{1}{3}$の等比数列と
なるとき、$\left\{b_n\right\}$の一般項は$b_n=\boxed{\ \ オ\ \ }$である。また、$\left\{a_n\right\}$も等比数列に
なるならば、$a_1=\boxed{\ \ カ\ \ }$である。このとき$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ キ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
6乗根をはずせ!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$6$乗根をはずせ.
$\sqrt[6]{99+70\sqrt2}$
この動画を見る
$6$乗根をはずせ.
$\sqrt[6]{99+70\sqrt2}$
複雑な平方根の計算
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{(\sqrt 5 -2)^{100}(5+2 \sqrt 5)^{100}}{5^{50}}$
関西学院
この動画を見る
$\frac{(\sqrt 5 -2)^{100}(5+2 \sqrt 5)^{100}}{5^{50}}$
関西学院
福田の数学〜慶應義塾大学2021年薬学部第1問(6)〜整数解
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(6)整数$x,y$が$x \gt 1,y \gt 1,x \neq y$を満たし、等式
$6x^2+13xy+7x+5y^2+7y+2=966$
を満たすとする。
$(\textrm{i})6x^2+13xy+7x+5y^2+7y+2$を因数分解すると$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})$この等式を満たすxとyの組をすべて挙げると$(x,y)=\boxed{\ \ サ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{1}}$(6)整数$x,y$が$x \gt 1,y \gt 1,x \neq y$を満たし、等式
$6x^2+13xy+7x+5y^2+7y+2=966$
を満たすとする。
$(\textrm{i})6x^2+13xy+7x+5y^2+7y+2$を因数分解すると$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})$この等式を満たすxとyの組をすべて挙げると$(x,y)=\boxed{\ \ サ\ \ }$である。
2021慶應義塾大学薬学部過去問
因数分解 因数定理
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解しなさい(有理数係数)
$x^8+x^4+1$
$x^5+x+1$
$x^5+x-1$
この動画を見る
因数分解しなさい(有理数係数)
$x^8+x^4+1$
$x^5+x+1$
$x^5+x-1$
福島大 基本対称式
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
{$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=-4\\ab+bc+ca=7 \\
abc=10
\end{array}
\right.
\end{eqnarray}$
①$a^2+b^2+c^2$
②$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
③$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}$
2021福島大過去問
この動画を見る
これを解け.
{$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=-4\\ab+bc+ca=7 \\
abc=10
\end{array}
\right.
\end{eqnarray}$
①$a^2+b^2+c^2$
②$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
③$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}$
2021福島大過去問
息抜き雑問
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
①$\sqrt{3・5・17・257+1}$
どちらが大きいか?
②$9^{12}$ VS $127^{5}$
この動画を見る
これを解け.
①$\sqrt{3・5・17・257+1}$
どちらが大きいか?
②$9^{12}$ VS $127^{5}$