数と式
【数Ⅰ】中高一貫校問題集3(論理・確率編)33:集合と命題:命題と証明:背理法を使った証明
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
√2が無理数であることを用いて「1+2√2が無理数である」ことを証明せよ【背理法】
この動画を見る
√2が無理数であることを用いて「1+2√2が無理数である」ことを証明せよ【背理法】
【数Ⅰ】中高一貫校問題集3(論理・確率編)29:集合と命題:命題と証明:逆裏対偶の真偽の見分け方
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
命題[xy>0 ⇒ x>0 かつy>0]の逆、裏、対偶を述べ、さらにそれぞれの真偽を考えよ【集合と命題】【逆 裏 対偶】
この動画を見る
命題[xy>0 ⇒ x>0 かつy>0]の逆、裏、対偶を述べ、さらにそれぞれの真偽を考えよ【集合と命題】【逆 裏 対偶】
福田の1日1題わかった数学〜高校1年生第2回〜因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 数と式
$(a-b)^3+(b-c)^3+(c-a)^3$
を因数分解せよ。
この動画を見る
数学$\textrm{I}$ 数と式
$(a-b)^3+(b-c)^3+(c-a)^3$
を因数分解せよ。
福田の1日1題「わかった!」数学〜高校1年生第1回〜二重根号
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 数と式
$\sqrt{3+\sqrt2+\sqrt3+\sqrt6}$
を簡単にせよ。
この動画を見る
数学$\textrm{I}$ 数と式
$\sqrt{3+\sqrt2+\sqrt3+\sqrt6}$
を簡単にせよ。
√小数
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{3.6} - \sqrt{1.6}$
この動画を見る
$\sqrt{3.6} - \sqrt{1.6}$
平方根穴埋め
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{18}+\sqrt{▢} = \sqrt{50}$
この動画を見る
$\sqrt{18}+\sqrt{▢} = \sqrt{50}$
2乗❌2乗❌2乗
大阪市立大 奇数の和 奇数の平方の和
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は3以上の奇数である.
$S_n=1+3+5+・・・・+n$
$T_n=1^2+3^2+5^2+・・・・n^2$
①$S_n$は$n$で割り切れないことを示せ.
②$T_n$が$n$で割り切れるための$n$の条件を求めよ.
2021大阪市立大過去問
この動画を見る
$n$は3以上の奇数である.
$S_n=1+3+5+・・・・+n$
$T_n=1^2+3^2+5^2+・・・・n^2$
①$S_n$は$n$で割り切れないことを示せ.
②$T_n$が$n$で割り切れるための$n$の条件を求めよ.
2021大阪市立大過去問
慶應義塾の入試問題 魔法見抜ける?
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#文章題#文章題その他#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
等式を次のように変形したが最後の行が間違っている。
間違いの原因は何行目から何行目の変形か。理由とともに答えよ。
(1)$x^2+2x+3=x^2+x$
(2)$x^2+7x+12 = x^2+6x+9$
(3)$(x^2+7x+12) \div x = (x^2+6x+9) \div x$
(4)$(x+3)(x+4) \div x = (x+3)^2 \div x$
(5)$(x+4) \div x = (x+3) \div x $
(6)$x+4 = x+3$
4=3
この動画を見る
等式を次のように変形したが最後の行が間違っている。
間違いの原因は何行目から何行目の変形か。理由とともに答えよ。
(1)$x^2+2x+3=x^2+x$
(2)$x^2+7x+12 = x^2+6x+9$
(3)$(x^2+7x+12) \div x = (x^2+6x+9) \div x$
(4)$(x+3)(x+4) \div x = (x+3)^2 \div x$
(5)$(x+4) \div x = (x+3) \div x $
(6)$x+4 = x+3$
4=3
不等式は方程式と同じように解けない
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{2x+6}{x}=1$
$2x+6=x$
$x=-6$
○
$\frac{2x+6}{x}<1$
$2x+6<x$
$x<-6$
✖
この動画を見る
$\frac{2x+6}{x}=1$
$2x+6=x$
$x=-6$
○
$\frac{2x+6}{x}<1$
$2x+6<x$
$x<-6$
✖
気づけば一瞬!!白陵
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
ab=30,bc=18,ca=15(a>0,b>0,c>0)のとき
abc=? a=? b=? c=?
この動画を見る
ab=30,bc=18,ca=15(a>0,b>0,c>0)のとき
abc=? a=? b=? c=?
100以下の素数全部~全国入試問題解法
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
100以下の素数全部~全国入試問題解法
【100までの素数】
2,3,5,7,11
13, 17, 19, 23, 29
31.37,41,43,47
53, 59, 61, 67, 71
73,79,83,89.97
全部で25個
【合成数(総数と勘違いしやすい)】
51,57,87,91
素数・・・1とその数以外に約数外 ない正の数。
この動画を見る
100以下の素数全部~全国入試問題解法
【100までの素数】
2,3,5,7,11
13, 17, 19, 23, 29
31.37,41,43,47
53, 59, 61, 67, 71
73,79,83,89.97
全部で25個
【合成数(総数と勘違いしやすい)】
51,57,87,91
素数・・・1とその数以外に約数外 ない正の数。
ただの因数分解 愛知医科大
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$a^4+2a^3+3a^2+2a+1$
簡単に
$\sqrt{\dfrac{x^4+y^4+(x+y)^4}{2}}$
2019愛知医科大過去問
この動画を見る
因数分解せよ.
$a^4+2a^3+3a^2+2a+1$
簡単に
$\sqrt{\dfrac{x^4+y^4+(x+y)^4}{2}}$
2019愛知医科大過去問
ペアを作ろう!!A 大阪教育大学附属池田 洛南
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{1} \times \sqrt{2} \times \sqrt{3} \times \sqrt{4} \times \sqrt{5} \times \sqrt{6} \times \sqrt{7} \times \sqrt{8} \times \sqrt{9} \times \sqrt{10} =$
大阪教育大学附属高等学校池田校舎
この動画を見る
$\sqrt{1} \times \sqrt{2} \times \sqrt{3} \times \sqrt{4} \times \sqrt{5} \times \sqrt{6} \times \sqrt{7} \times \sqrt{8} \times \sqrt{9} \times \sqrt{10} =$
大阪教育大学附属高等学校池田校舎
高校範囲の因数分解
√6…
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{6\sqrt{6\sqrt{6 \cdots}}}$
この動画を見る
$\sqrt{6\sqrt{6\sqrt{6 \cdots}}}$
【数Ⅰ】中高一貫校用問題集(論理・確率編)集合と命題:命題と条件:必要条件、十分条件の見分け方
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$「x=2」$ならば$「x^2=2x」$であるための○○条件を求めよ.
この動画を見る
$「x=2」$ならば$「x^2=2x」$であるための○○条件を求めよ.
【数Ⅰ】中高一貫校用問題集(論理・確率編)集合と命題:命題と条件:範囲を利用した真偽の見分け方
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の命題の真偽を調べよ
$「-1<x<2」 ⇒ 「x>-2」$
この動画を見る
次の命題の真偽を調べよ
$「-1<x<2」 ⇒ 「x>-2」$
【数Ⅰ】中高一貫校問題集3(論理・確率編)17:集合と命題:命題と条件:範囲を利用した真偽の見分け方
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の命題の真偽を調べよ
「-1<x<2」 ⇒ 「x>-2」【集合と命題】
この動画を見る
次の命題の真偽を調べよ
「-1<x<2」 ⇒ 「x>-2」【集合と命題】
【数Ⅰ】中高一貫校問題集3(論理・確率編)19:集合と命題:命題と条件:必要条件、十分条件の見分け方
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
「x=2」ならば「x²=2x」であるための○○条件である 【集合と命題】【必要十分条件】
この動画を見る
「x=2」ならば「x²=2x」であるための○○条件である 【集合と命題】【必要十分条件】
新高1生へ 失敗しないたすきがけ因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$48x^2+5x-18$
$(ax+b)(cx+d)$
この動画を見る
因数分解せよ.
$48x^2+5x-18$
$(ax+b)(cx+d)$
数学「大学入試良問集」【1−3 背理法・対偶】を宇宙一わかりやすく
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
(ⅰ)$\sqrt{ 2 }$が無理数であることを証明せよ。
(ⅱ)実数$a$が$a^3+\alpha+1=0$を満たすとき、$\alpha$が無理数であることを証明せよ。
(2)
(ⅰ)$n$を自然数とするとき、$n^3$が$3$の倍数ならば、$n$は$3$の倍数のなることを証明せよ。
(ⅱ)$\sqrt[ 3 ]{ 3 }$が無理数であることを証明せよ。
この動画を見る
次の問いに答えよ。
(1)
(ⅰ)$\sqrt{ 2 }$が無理数であることを証明せよ。
(ⅱ)実数$a$が$a^3+\alpha+1=0$を満たすとき、$\alpha$が無理数であることを証明せよ。
(2)
(ⅰ)$n$を自然数とするとき、$n^3$が$3$の倍数ならば、$n$は$3$の倍数のなることを証明せよ。
(ⅱ)$\sqrt[ 3 ]{ 3 }$が無理数であることを証明せよ。
数学「大学入試良問集」【1−2 数と式】を宇宙一わかりやすく
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y$を実数とする。
下の(1)、(2)の文中の□にあてはまるものを、次の(ア)、(イ)、(ウ)、(エ)の中から選べ。
(ア)必要条件ではあるが、十分条件ではない
(イ)十分条件ではあるが、必要条件ではない
(ウ)必要十分条件である
(エ)必要条件でも、十分条件でもない
(1)$x^2+y^2 \lt 1$は、$-1 \lt x \lt $であるための□。
(2)$-1 \lt x \lt 1$かつ$-1 \lt y \lt 1$は$x^2+y^2 \lt 1$であるための□。
この動画を見る
$x,y$を実数とする。
下の(1)、(2)の文中の□にあてはまるものを、次の(ア)、(イ)、(ウ)、(エ)の中から選べ。
(ア)必要条件ではあるが、十分条件ではない
(イ)十分条件ではあるが、必要条件ではない
(ウ)必要十分条件である
(エ)必要条件でも、十分条件でもない
(1)$x^2+y^2 \lt 1$は、$-1 \lt x \lt $であるための□。
(2)$-1 \lt x \lt 1$かつ$-1 \lt y \lt 1$は$x^2+y^2 \lt 1$であるための□。
【できなきゃ死 Part2】今のうちに展開をマスターしとこ【数学】【高校数学】
【できなきゃ死】今のうちに展開をマスターしとこ【数学】【中学3年数学、高校数学】
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
①$(x+a)(x+b)=$
②$(x+a)^2=$
③$(x-a)^2=$
④$(x+a)(x-a)=$
この動画を見る
①$(x+a)(x+b)=$
②$(x+a)^2=$
③$(x-a)^2=$
④$(x+a)(x-a)=$
【みんな大好き】因数分解:明治薬科~全国入試問題解法
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 明治薬科
$x^2+4xy+3y^2+2x+4y+1$
因数分解せよ。
この動画を見る
入試問題 明治薬科
$x^2+4xy+3y^2+2x+4y+1$
因数分解せよ。
因数分解&ご報告
ただの因数分解2021関西医科大
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$(x^2-15x-2)(x^2+15x-2)-5x^2+2021$
2021関西医科大過去問
この動画を見る
因数分解せよ.
$(x^2-15x-2)(x^2+15x-2)-5x^2+2021$
2021関西医科大過去問
ルートを外せ11 B 2021 中央大附属
単元:
#数学(中学生)#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{60(n+1)(n^2-1)}$が整数となるような2ケタの整数nをすべて求めよ。
2021中央大学附属高等学校
この動画を見る
$\sqrt{60(n+1)(n^2-1)}$が整数となるような2ケタの整数nをすべて求めよ。
2021中央大学附属高等学校
そのまま〇〇するな! A A
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=-3x^2$でxの変域が$-4 \leqq x \leqq 1$のとき
$▢ \leqq y \leqq ▢$
2021東京都立共通問題
この動画を見る
$y=-3x^2$でxの変域が$-4 \leqq x \leqq 1$のとき
$▢ \leqq y \leqq ▢$
2021東京都立共通問題