数と式
【数Ⅰ】中高一貫校問題集3(論理・確率編)17:集合と命題:命題と条件:範囲を利用した真偽の見分け方
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の命題の真偽を調べよ
「-1<x<2」 ⇒ 「x>-2」【集合と命題】
この動画を見る
次の命題の真偽を調べよ
「-1<x<2」 ⇒ 「x>-2」【集合と命題】
【数Ⅰ】中高一貫校問題集3(論理・確率編)19:集合と命題:命題と条件:必要条件、十分条件の見分け方
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
「x=2」ならば「x²=2x」であるための○○条件である 【集合と命題】【必要十分条件】
この動画を見る
「x=2」ならば「x²=2x」であるための○○条件である 【集合と命題】【必要十分条件】
新高1生へ 失敗しないたすきがけ因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$48x^2+5x-18$
$(ax+b)(cx+d)$
この動画を見る
因数分解せよ.
$48x^2+5x-18$
$(ax+b)(cx+d)$
数学「大学入試良問集」【1−3 背理法・対偶】を宇宙一わかりやすく
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
(ⅰ)$\sqrt{ 2 }$が無理数であることを証明せよ。
(ⅱ)実数$a$が$a^3+\alpha+1=0$を満たすとき、$\alpha$が無理数であることを証明せよ。
(2)
(ⅰ)$n$を自然数とするとき、$n^3$が$3$の倍数ならば、$n$は$3$の倍数のなることを証明せよ。
(ⅱ)$\sqrt[ 3 ]{ 3 }$が無理数であることを証明せよ。
この動画を見る
次の問いに答えよ。
(1)
(ⅰ)$\sqrt{ 2 }$が無理数であることを証明せよ。
(ⅱ)実数$a$が$a^3+\alpha+1=0$を満たすとき、$\alpha$が無理数であることを証明せよ。
(2)
(ⅰ)$n$を自然数とするとき、$n^3$が$3$の倍数ならば、$n$は$3$の倍数のなることを証明せよ。
(ⅱ)$\sqrt[ 3 ]{ 3 }$が無理数であることを証明せよ。
【できなきゃ死 Part2】今のうちに展開をマスターしとこ【数学】【高校数学】
数学「大学入試良問集」【1−2 数と式】を宇宙一わかりやすく
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y$を実数とする。
下の(1)、(2)の文中の□にあてはまるものを、次の(ア)、(イ)、(ウ)、(エ)の中から選べ。
(ア)必要条件ではあるが、十分条件ではない
(イ)十分条件ではあるが、必要条件ではない
(ウ)必要十分条件である
(エ)必要条件でも、十分条件でもない
(1)$x^2+y^2 \lt 1$は、$-1 \lt x \lt $であるための□。
(2)$-1 \lt x \lt 1$かつ$-1 \lt y \lt 1$は$x^2+y^2 \lt 1$であるための□。
この動画を見る
$x,y$を実数とする。
下の(1)、(2)の文中の□にあてはまるものを、次の(ア)、(イ)、(ウ)、(エ)の中から選べ。
(ア)必要条件ではあるが、十分条件ではない
(イ)十分条件ではあるが、必要条件ではない
(ウ)必要十分条件である
(エ)必要条件でも、十分条件でもない
(1)$x^2+y^2 \lt 1$は、$-1 \lt x \lt $であるための□。
(2)$-1 \lt x \lt 1$かつ$-1 \lt y \lt 1$は$x^2+y^2 \lt 1$であるための□。
【できなきゃ死】今のうちに展開をマスターしとこ【数学】【中学3年数学、高校数学】
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
①$(x+a)(x+b)=$
②$(x+a)^2=$
③$(x-a)^2=$
④$(x+a)(x-a)=$
この動画を見る
①$(x+a)(x+b)=$
②$(x+a)^2=$
③$(x-a)^2=$
④$(x+a)(x-a)=$
因数分解&ご報告
ただの因数分解2021関西医科大
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$(x^2-15x-2)(x^2+15x-2)-5x^2+2021$
2021関西医科大過去問
この動画を見る
因数分解せよ.
$(x^2-15x-2)(x^2+15x-2)-5x^2+2021$
2021関西医科大過去問
ルートを外せ11 B 2021 中央大附属
単元:
#数学(中学生)#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{60(n+1)(n^2-1)}$が整数となるような2ケタの整数nをすべて求めよ。
2021中央大学附属高等学校
この動画を見る
$\sqrt{60(n+1)(n^2-1)}$が整数となるような2ケタの整数nをすべて求めよ。
2021中央大学附属高等学校
そのまま〇〇するな! A A
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=-3x^2$でxの変域が$-4 \leqq x \leqq 1$のとき
$▢ \leqq y \leqq ▢$
2021東京都立共通問題
この動画を見る
$y=-3x^2$でxの変域が$-4 \leqq x \leqq 1$のとき
$▢ \leqq y \leqq ▢$
2021東京都立共通問題
2021 八王子東高校最初の一問 A
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\frac{\sqrt 6 + 2}{\sqrt 2})(\frac{\sqrt 2 - \sqrt 3 }{3})$
2021八王子東高等学校
この動画を見る
$(\frac{\sqrt 6 + 2}{\sqrt 2})(\frac{\sqrt 2 - \sqrt 3 }{3})$
2021八王子東高等学校
○か✖️か 2021 中大横浜 B
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正しいものをすべて選べ
(ア)$\frac{-4+2\sqrt 3}{2} = -2+2\sqrt 3$
(イ)1は素数である
(ウ)$\sqrt{1.69}$は有理数
(エ)$\frac{3}{0}=0$である
(オ)$\sqrt 9 + \sqrt{16} = \sqrt{25}$
2021中央大学附属横浜高等学校
この動画を見る
正しいものをすべて選べ
(ア)$\frac{-4+2\sqrt 3}{2} = -2+2\sqrt 3$
(イ)1は素数である
(ウ)$\sqrt{1.69}$は有理数
(エ)$\frac{3}{0}=0$である
(オ)$\sqrt 9 + \sqrt{16} = \sqrt{25}$
2021中央大学附属横浜高等学校
慶応高校 一言言いたいだけの動画
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$(a^2-2a-6)(a^2-2a-17)+18$
2021慶應義塾高過去問
この動画を見る
因数分解せよ.
$(a^2-2a-6)(a^2-2a-17)+18$
2021慶應義塾高過去問
三乗根を外せ (類題)学習院大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
三乗根を外せ.
$\sqrt[3]{9-4\sqrt5}$
この動画を見る
三乗根を外せ.
$\sqrt[3]{9-4\sqrt5}$
2021 灘高校 最初の一問
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(2\sqrt 2 -3)^2=$
$\sqrt{\sqrt{(10-7\sqrt 2)^2} - \sqrt{(7-5\sqrt 2)^2} }$
2021灘高等学校
この動画を見る
$(2\sqrt 2 -3)^2=$
$\sqrt{\sqrt{(10-7\sqrt 2)^2} - \sqrt{(7-5\sqrt 2)^2} }$
2021灘高等学校
【最速】和積公式/積和公式を5分でマスター
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
和積公式/積和公式の解説動画です
-----------------
①$\sin A +\sin B$
②$\sin A -\sin B$
③$\cos A +\cos B$
④$\cos A +\cos B$
この動画を見る
和積公式/積和公式の解説動画です
-----------------
①$\sin A +\sin B$
②$\sin A -\sin B$
③$\cos A +\cos B$
④$\cos A +\cos B$
【数Ⅰ】数と式:繁分数② 次の式を簡単にしよう。x³/{x-1/(x+1/x)}
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を簡単にしよう。
$\dfrac{x^3}{x-\dfrac{1}{x+\dfrac{1}{x}}}$
この動画を見る
次の式を簡単にしよう。
$\dfrac{x^3}{x-\dfrac{1}{x+\dfrac{1}{x}}}$
2021昭和(医)いわくつき学習院の過去問と同じ!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(\sqrt{n^2-9n+19})^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ.
2021昭和(医)
この動画を見る
$(\sqrt{n^2-9n+19})^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ.
2021昭和(医)
【数Ⅰ】数と式:繁分数① 次の式を簡単にしよう。{(a+x)/(a-x)-(a-x)/(a+x)}/{(a+x)/(a-x)+(a-x)/(a+x)}
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を簡単にしよう。
$\dfrac{\dfrac{a+x}{a-x}-\dfrac{a-x}{a+x}}{\dfrac{a+x}{a-x}+\dfrac{a-x}{a+x}}$
この動画を見る
次の式を簡単にしよう。
$\dfrac{\dfrac{a+x}{a-x}-\dfrac{a-x}{a+x}}{\dfrac{a+x}{a-x}+\dfrac{a-x}{a+x}}$
2021関西医科大 絶対値記号・整数問題
単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-\vert x \vert y+y^2=3$
整数$(x,y)$を求めよ.
2021関西医科大過去問
この動画を見る
$x^2-\vert x \vert y+y^2=3$
整数$(x,y)$を求めよ.
2021関西医科大過去問
共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第1問〜2次関数と三角比
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第1問}$
[1] $a,b$を定数とするとき、$x$についての不等式
$|ax-b-7| \lt 3$ $\cdots$①
を考える。
(1)$a=-3,b=-2$とする。①を満たす整数全体の集合を$P$とする。
この集合$P$を、要素を書き並べて表すと
$P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}$
となる。ただし、$\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }$の解答の順序は問わない。
(2)$a=\displaystyle \frac{1}{\sqrt2}$とする。
$(\textrm{i})b=1$のとき、①を満たす整数は全部で$\boxed{\ \ オ\ \ }$個である。
$(\textrm{ii})$①を満たす整数が全部で$(\boxed{\ \ オ\ \ }+1)$個であるような正の整数$b$
のうち、最小のものは$\boxed{\ \ カ\ \ }$である。
[2]平面上に2点$A,B$があり、$AB=8$である。直線$AB$上にない点$P$をとり、
$\triangle ABP$をつくり、その外接円の半径を$R$とする。
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点$P$
をいろいろな位置に取った。
図1は、点$P$をいろいろな位置にとったときの$\triangle$の外接円をかいたものである。
(1)太郎さんは、点$P$のとり方によって外接円の半径が異なることに気づき、
次の問題1を考えることにした。
問題1:点$P$をいろいろな位置にとるとき、外接円の半径$R$が最小となる
$\triangle ABP$はどのような三角形か。
正弦定理により、$2R=\displaystyle \frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}$である。よって、
Rが最小となるのは$\angle APB=\boxed{\ \ クケ\ \ }°$の三角形である。
このとき、$R=\boxed{\ \ コ\ \ }$である。
(2)太郎さんは、図2(※動画参照)のように、問題1の点$P$のとり方に
条件を付けて、次の問題2を考えた。
問題2:直線$AB$に平行な直線を$l$とし、直線l上で点$P$をいろいろな
位置にとる。このとき、外接円の半径$R$が最小となる$\triangle ABP$は
どのような三角形か。
太郎さんは、この問題を解決するために、次の構想を立てた。
問題2の解決の構想
問題1の考察から、線分$AB$を直径とする円を$C$とし、円$C$に着目
する。直線lは、その位置によって、円$C$と共有点を持つ場合と
もたない場合があるので、それぞれの場合に分けて考える。
直線$AB$と直線lとの距離を$h$とする。直線lが円$C$と共有点を
持つ場合は、$h \leqq \boxed{\ \ サ\ \ }$のときであり、共有点をもたない場合は、
$h \gt \boxed{\ \ サ\ \ }$のときである。
$(\textrm{i})h \leqq \boxed{\ \ サ\ \ }$のとき
直線$l$が円$C$と共有点をもつので、$R$が最小となる$\triangle ABP$は、
$h \lt \boxed{\ \ サ\ \ }$のとき$\boxed{\boxed{\ \ シ\ \ }}$であり、$h=\boxed{\ \ サ\ \ }$のとき直角二等辺三角形
である。
$(\textrm{ii})h \gt \boxed{\ \ サ\ \ }$のとき
線分$AB$の垂直二等分線を$m$とし、直線$m$と直線$l$との交点を$P_1$とする。
直線$l$上にあり点$P_1$とは異なる点を$P_2$とするとき$\sin\angle AP_1B$
と$\sin\angle AP_2B$の大小を考える。
$\triangle ABP_2$の外接円と直線$m$との共有点のうち、直線$AB$に関して点$P_2$
と同じ側にある点を$P_3$とすると、$\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2B$である。
また、$\angle AP_3B \lt \angle AP_1B \lt 90°$より$\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1B$である。
このとき$(\triangle ABP_1$の外接円の半径$) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2$の外接円の半径)
であり、$R$が最小となる$\triangle ABP$は$\boxed{\boxed{\ \ タ\ \ }}$である。
$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}$については、最も適当なものを、次の⓪~④のうち
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
⓪鈍角三角形 ①直角三角形 ②正三角形
③二等辺三角形 ④直角二等辺三角形
$\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$
(3)問題2の考察を振り返って、$h=8$のとき、$\triangle ABP$の外接円の半径$R$
が最小である場合について考える。このとき、$\sin\angle APB=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$R=\boxed{\ \ テ\ \ }$である。
2021共通テスト過去問
この動画を見る
${\large第1問}$
[1] $a,b$を定数とするとき、$x$についての不等式
$|ax-b-7| \lt 3$ $\cdots$①
を考える。
(1)$a=-3,b=-2$とする。①を満たす整数全体の集合を$P$とする。
この集合$P$を、要素を書き並べて表すと
$P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}$
となる。ただし、$\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }$の解答の順序は問わない。
(2)$a=\displaystyle \frac{1}{\sqrt2}$とする。
$(\textrm{i})b=1$のとき、①を満たす整数は全部で$\boxed{\ \ オ\ \ }$個である。
$(\textrm{ii})$①を満たす整数が全部で$(\boxed{\ \ オ\ \ }+1)$個であるような正の整数$b$
のうち、最小のものは$\boxed{\ \ カ\ \ }$である。
[2]平面上に2点$A,B$があり、$AB=8$である。直線$AB$上にない点$P$をとり、
$\triangle ABP$をつくり、その外接円の半径を$R$とする。
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点$P$
をいろいろな位置に取った。
図1は、点$P$をいろいろな位置にとったときの$\triangle$の外接円をかいたものである。
(1)太郎さんは、点$P$のとり方によって外接円の半径が異なることに気づき、
次の問題1を考えることにした。
問題1:点$P$をいろいろな位置にとるとき、外接円の半径$R$が最小となる
$\triangle ABP$はどのような三角形か。
正弦定理により、$2R=\displaystyle \frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}$である。よって、
Rが最小となるのは$\angle APB=\boxed{\ \ クケ\ \ }°$の三角形である。
このとき、$R=\boxed{\ \ コ\ \ }$である。
(2)太郎さんは、図2(※動画参照)のように、問題1の点$P$のとり方に
条件を付けて、次の問題2を考えた。
問題2:直線$AB$に平行な直線を$l$とし、直線l上で点$P$をいろいろな
位置にとる。このとき、外接円の半径$R$が最小となる$\triangle ABP$は
どのような三角形か。
太郎さんは、この問題を解決するために、次の構想を立てた。
問題2の解決の構想
問題1の考察から、線分$AB$を直径とする円を$C$とし、円$C$に着目
する。直線lは、その位置によって、円$C$と共有点を持つ場合と
もたない場合があるので、それぞれの場合に分けて考える。
直線$AB$と直線lとの距離を$h$とする。直線lが円$C$と共有点を
持つ場合は、$h \leqq \boxed{\ \ サ\ \ }$のときであり、共有点をもたない場合は、
$h \gt \boxed{\ \ サ\ \ }$のときである。
$(\textrm{i})h \leqq \boxed{\ \ サ\ \ }$のとき
直線$l$が円$C$と共有点をもつので、$R$が最小となる$\triangle ABP$は、
$h \lt \boxed{\ \ サ\ \ }$のとき$\boxed{\boxed{\ \ シ\ \ }}$であり、$h=\boxed{\ \ サ\ \ }$のとき直角二等辺三角形
である。
$(\textrm{ii})h \gt \boxed{\ \ サ\ \ }$のとき
線分$AB$の垂直二等分線を$m$とし、直線$m$と直線$l$との交点を$P_1$とする。
直線$l$上にあり点$P_1$とは異なる点を$P_2$とするとき$\sin\angle AP_1B$
と$\sin\angle AP_2B$の大小を考える。
$\triangle ABP_2$の外接円と直線$m$との共有点のうち、直線$AB$に関して点$P_2$
と同じ側にある点を$P_3$とすると、$\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2B$である。
また、$\angle AP_3B \lt \angle AP_1B \lt 90°$より$\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1B$である。
このとき$(\triangle ABP_1$の外接円の半径$) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2$の外接円の半径)
であり、$R$が最小となる$\triangle ABP$は$\boxed{\boxed{\ \ タ\ \ }}$である。
$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}$については、最も適当なものを、次の⓪~④のうち
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
⓪鈍角三角形 ①直角三角形 ②正三角形
③二等辺三角形 ④直角二等辺三角形
$\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$
(3)問題2の考察を振り返って、$h=8$のとき、$\triangle ABP$の外接円の半径$R$
が最小である場合について考える。このとき、$\sin\angle APB=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$R=\boxed{\ \ テ\ \ }$である。
2021共通テスト過去問
2021年藤田医科大
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$は実数である.
$\left(\dfrac{2+\sqrt{-77}}{9}\right)^{2021}=\dfrac{x+y\sqrt{-77}}{9}$
$x^2+77y^2$の値を求めよ.
2021藤田医科大過去問
この動画を見る
$x,y$は実数である.
$\left(\dfrac{2+\sqrt{-77}}{9}\right)^{2021}=\dfrac{x+y\sqrt{-77}}{9}$
$x^2+77y^2$の値を求めよ.
2021藤田医科大過去問
秘技!瞬間平方完成
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^2+n+1=5^m$を満たす自然数$(m,n)$は存在しないことを示せ.
この動画を見る
$n^2+n+1=5^m$を満たす自然数$(m,n)$は存在しないことを示せ.
8進数の7の倍数・3の倍数判定法
単元:
#数Ⅰ#数A#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$8$進法で表記された
$\boxed{a}\boxed{b}\boxed{c}\boxed{d}\boxed{e}\boxed{f}$
が①$7$で割り切れる必要十分条件を求めよ.
②$3$で割り切れる必要十分条件を求めよ.
この動画を見る
$8$進法で表記された
$\boxed{a}\boxed{b}\boxed{c}\boxed{d}\boxed{e}\boxed{f}$
が①$7$で割り切れる必要十分条件を求めよ.
②$3$で割り切れる必要十分条件を求めよ.
これは無理数か?
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{97-56\sqrt3}+\sqrt{73+40\sqrt3}$は無理数か?
この動画を見る
$\sqrt{97-56\sqrt3}+\sqrt{73+40\sqrt3}$は無理数か?
平方根の計算 A コメント欄に良い解説あり!
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\frac{1}{\sqrt 2} - \frac{1}{\sqrt 3})(\frac{1}{\sqrt 6} + \frac{1}{3})=$
日比谷高等学校
この動画を見る
$(\frac{1}{\sqrt 2} - \frac{1}{\sqrt 3})(\frac{1}{\sqrt 6} + \frac{1}{3})=$
日比谷高等学校
数理クイズ
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
数理クイズ.これを解け.
$5\times 5=23$
$6\times 6=33$
$7\times 7=45$
$8\times 8=59$
$ 9\times 9=?$
$ 10\times 10=100$
この動画を見る
数理クイズ.これを解け.
$5\times 5=23$
$6\times 6=33$
$7\times 7=45$
$8\times 8=59$
$ 9\times 9=?$
$ 10\times 10=100$
4つの相加相乗平均
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$を正とする.
$\dfrac{a+b+c+d}{4}\geqq \sqrt[4]{abcd}$を示し,それを用いて$\dfrac{a+b+c}{3}\geqq \sqrt[3]{abc}$を示せ.
この動画を見る
$a,b,c,d$を正とする.
$\dfrac{a+b+c+d}{4}\geqq \sqrt[4]{abcd}$を示し,それを用いて$\dfrac{a+b+c}{3}\geqq \sqrt[3]{abc}$を示せ.