数と式
数と式
【高校数学】数Ⅰ-31 命題⑤

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の命題の逆、裏、対偶を書き、それぞれ真偽を調べよう。
①$x=-1$ならば$x^2=1$
[逆]
[裏]
[対偶]
②$x+y>2$ならば$x>0$または$y>2$
[逆]
[裏]
[対偶]
この動画を見る
◎x,yは実数とする。
次の命題の逆、裏、対偶を書き、それぞれ真偽を調べよう。
①$x=-1$ならば$x^2=1$
[逆]
[裏]
[対偶]
②$x+y>2$ならば$x>0$または$y>2$
[逆]
[裏]
[対偶]
【高校数学】数Ⅰ-30 命題④

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数、m,nは自然数とする。
次の条件の否定を書こう。
①$x<-1$かつ$y \geqq 2$
②$-5 \leqq x<3$
③nは奇数または3の倍数
④m,nともに6の倍数
◎次の命題の否定を書き、その真偽を調べよう。
⑤すべての素数nについて、nは奇数である。
この動画を見る
◎x,yは実数、m,nは自然数とする。
次の条件の否定を書こう。
①$x<-1$かつ$y \geqq 2$
②$-5 \leqq x<3$
③nは奇数または3の倍数
④m,nともに6の倍数
◎次の命題の否定を書き、その真偽を調べよう。
⑤すべての素数nについて、nは奇数である。
【高校数学】数Ⅰ-29 命題③

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない
①$xy=0$は、$x^2+y^2>0$が成立するための▭
②$△ABC∞△PQR$は、$△ABC \equiv △PQR$であるための▭
③$|x|<1$かつ$|y|<1$は、$x^2+y^2<1$であるための▭
この動画を見る
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない
①$xy=0$は、$x^2+y^2>0$が成立するための▭
②$△ABC∞△PQR$は、$△ABC \equiv △PQR$であるための▭
③$|x|<1$かつ$|y|<1$は、$x^2+y^2<1$であるための▭
【高校数学】数Ⅰ-28 命題②

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない
①$x=2$は、$x^2-x-2=0$であるための▭
②$xy=0$は、$x=0$であるための▭
③$|x|=0$は、$x=0$であるための▭
④$xy>1$は、$x>1$であるための▭
この動画を見る
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない
①$x=2$は、$x^2-x-2=0$であるための▭
②$xy=0$は、$x=0$であるための▭
③$|x|=0$は、$x=0$であるための▭
④$xy>1$は、$x>1$であるための▭
【高校数学】数Ⅰ-27 命題①

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎a,b,cは実数、dは自然数とする。
次の命題の真偽を調べ、偽のときは判例を1つ示そう。
①$a=0$ならば$ab=0$
②$a^2=b^2$ならば$a=b$
③$a<2$ならば$|a|<4$
④dは2倍の倍数 ならば dの4の倍数
⑤$|a|<3$ならば$a<3$
⑥dは18の約数ならばdは36の約数
この動画を見る
◎a,b,cは実数、dは自然数とする。
次の命題の真偽を調べ、偽のときは判例を1つ示そう。
①$a=0$ならば$ab=0$
②$a^2=b^2$ならば$a=b$
③$a<2$ならば$|a|<4$
④dは2倍の倍数 ならば dの4の倍数
⑤$|a|<3$ならば$a<3$
⑥dは18の約数ならばdは36の約数
【高校数学】数Ⅰ-26 集合③

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎U={$x | x$は10以下の自然数}を全体集合とする。
$A \cap B={3}、\overline{ A } \cap \overline{ B }={1,2,5,8,}、\overline{ A } \cap B={4,7,10}$
のとき、次の集合を求めよう。
①$A$
②$B$
③$A \cap\overline{ B}$
この動画を見る
◎U={$x | x$は10以下の自然数}を全体集合とする。
$A \cap B={3}、\overline{ A } \cap \overline{ B }={1,2,5,8,}、\overline{ A } \cap B={4,7,10}$
のとき、次の集合を求めよう。
①$A$
②$B$
③$A \cap\overline{ B}$
【高校数学】数Ⅰ-25 集合②

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎U={$x | x$は9以下の自然数}を全体集合とする。
$U$の部分集合$A={1.3.4.8},B={3.4.5.7.9}$,$C={2,3,7,9}$について、次の集合を求めよう。
①$A \cap B \cap C$
②$A \cap B \cap \overline{ C }$
③$\overline{ A } \cap B \cap C$
④$ \overline{ A \cup B \cup C} $
⑤$\overline{ A } \cap B \cap C$
⑥$(A \cup C) \cap \overline{ B} $
この動画を見る
◎U={$x | x$は9以下の自然数}を全体集合とする。
$U$の部分集合$A={1.3.4.8},B={3.4.5.7.9}$,$C={2,3,7,9}$について、次の集合を求めよう。
①$A \cap B \cap C$
②$A \cap B \cap \overline{ C }$
③$\overline{ A } \cap B \cap C$
④$ \overline{ A \cup B \cup C} $
⑤$\overline{ A } \cap B \cap C$
⑥$(A \cup C) \cap \overline{ B} $
【高校数学】数Ⅰ-24 集合①

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$U={1.2.3.4.5.6.7.8.9.10}$を全体集合とする。
$U$の部分集合$A={1.2.3.4.8},B={1.3.5.7.9}$について、次の集合を求めよう。
①$A \cap B$
②$A \cup B$
③$\overline{ A } \cap \overline{ B }$
④$ A \cup \overline{ B }$
⑤$\overline{ A } \cap B $
⑥$\overline{ A \cup B} $
この動画を見る
◎$U={1.2.3.4.5.6.7.8.9.10}$を全体集合とする。
$U$の部分集合$A={1.2.3.4.8},B={1.3.5.7.9}$について、次の集合を求めよう。
①$A \cap B$
②$A \cup B$
③$\overline{ A } \cap \overline{ B }$
④$ A \cup \overline{ B }$
⑤$\overline{ A } \cap B $
⑥$\overline{ A \cup B} $
【高校数学】数Ⅰ-23 絶対値を含む方程式・不等式③(続 応用編)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\sqrt{ x^2 }+\sqrt{ x^2-4x+4 }=4$
②$|x|-2|x+3|\geqq 0$
この動画を見る
①$\sqrt{ x^2 }+\sqrt{ x^2-4x+4 }=4$
②$|x|-2|x+3|\geqq 0$
【高校数学】数Ⅰ-22 絶対値を含む方程式・不等式②(応用編)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$|x-3|=4x$
②$|x-4| \leqq 3x$
③$|x+2|\gt 3x$
この動画を見る
①$|x-3|=4x$
②$|x-4| \leqq 3x$
③$|x+2|\gt 3x$
【高校数学】数Ⅰ-21 絶対値を含む方程式・不等式①(基本編)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0$のとき、$|x|=a$の解は①____、$|x|\lt a$の解は②____、$|x| \gt a$の解は③____となる。
④$|x+2|=5$
⑤$|x+3|\lt 7$
⑥$|x+4|\gt 3$
⑦$|3x-1|\geqq 5$
⑧$|5x-3| \leqq 2$
⑨$|6-x| \gt 4$
この動画を見る
$a \gt 0$のとき、$|x|=a$の解は①____、$|x|\lt a$の解は②____、$|x| \gt a$の解は③____となる。
④$|x+2|=5$
⑤$|x+3|\lt 7$
⑥$|x+4|\gt 3$
⑦$|3x-1|\geqq 5$
⑧$|5x-3| \leqq 2$
⑨$|6-x| \gt 4$
【高校数学】数Ⅰ-19 1次不等式③(連立不等式編)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 8 \geqq 4x+2 \\
3x + 4 \gt -2x
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
5x \lt 2(x-6) \\
7 - 2x \geqq 3x-8x
\end{array}
\right.
\end{eqnarray}$
③$2x-1\lt5x+8\lt7x+4$
この動画を見る
①$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 8 \geqq 4x+2 \\
3x + 4 \gt -2x
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
5x \lt 2(x-6) \\
7 - 2x \geqq 3x-8x
\end{array}
\right.
\end{eqnarray}$
③$2x-1\lt5x+8\lt7x+4$
【高校数学】数Ⅰ-20 1次不等式④(応用編)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①不等式$3x-a \lt 2(5-x)$を満たすxのうちで最大整数が5であるとき、定数aの値の範囲は?
②とある店では500円で会員になることができ、会員は10%引きで買い物ができる。
この店で定価600円の品物を買うとき、会員になった方が合計金額が安くなるのは何個以上買うとき?
この動画を見る
①不等式$3x-a \lt 2(5-x)$を満たすxのうちで最大整数が5であるとき、定数aの値の範囲は?
②とある店では500円で会員になることができ、会員は10%引きで買い物ができる。
この店で定価600円の品物を買うとき、会員になった方が合計金額が安くなるのは何個以上買うとき?
【高校数学】数Ⅰ-18 1次不等式②(練習編)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎不等式を解こう。
①$\displaystyle \frac{1}{2}x \gt \displaystyle \frac{4}{5}x+3$
②$\displaystyle \frac{x}{3}-\displaystyle \frac{x-5}{2} \gt 0$
③$0.2x-1 \geqq 0.4x -1.5$
④$\displaystyle \frac{5}{6}x+\displaystyle \frac{1}{3} \leqq x+\displaystyle \frac{3}{4}$
この動画を見る
◎不等式を解こう。
①$\displaystyle \frac{1}{2}x \gt \displaystyle \frac{4}{5}x+3$
②$\displaystyle \frac{x}{3}-\displaystyle \frac{x-5}{2} \gt 0$
③$0.2x-1 \geqq 0.4x -1.5$
④$\displaystyle \frac{5}{6}x+\displaystyle \frac{1}{3} \leqq x+\displaystyle \frac{3}{4}$
【高校数学】数Ⅰ-17 1次不等式①(基本編)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎不等式を解こう。
①$4x-2\gt3x+5$
②$6x+3\lt4x-7$
③$7+2x\lt5x-2$
④$-3(2x+1)\leqq-x+2$
⑤$-5x+21+2(4x-3)\geqq0$
⑥$-3(3x+1)\lt7(x-2)$
この動画を見る
◎不等式を解こう。
①$4x-2\gt3x+5$
②$6x+3\lt4x-7$
③$7+2x\lt5x-2$
④$-3(2x+1)\leqq-x+2$
⑤$-5x+21+2(4x-3)\geqq0$
⑥$-3(3x+1)\lt7(x-2)$
【高校数学】数Ⅰ-16 √(ルート)シリーズ④(二重根号編)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2重根号を外そう。
①$\sqrt{ 4+2\sqrt{ 3 } }$
②$\sqrt{ 5-2\sqrt{ 6 } }$
③$\sqrt{ 8-\sqrt{ 48 } }$
④$\sqrt{ 11+6\sqrt{ 2 } }$
⑤$\sqrt{ 4+\sqrt{ 15 } }$
⑥$\sqrt{ 6-3\sqrt{ 3 } }$
この動画を見る
◎2重根号を外そう。
①$\sqrt{ 4+2\sqrt{ 3 } }$
②$\sqrt{ 5-2\sqrt{ 6 } }$
③$\sqrt{ 8-\sqrt{ 48 } }$
④$\sqrt{ 11+6\sqrt{ 2 } }$
⑤$\sqrt{ 4+\sqrt{ 15 } }$
⑥$\sqrt{ 6-3\sqrt{ 3 } }$
【高校数学】数Ⅰ-15 √(ルート)シリーズ③(応用編)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\displaystyle \frac{1}{2-\sqrt{ 3 }}$の整数部分を$a$、小数部分を$b$とする。
①$a,b$の値は?
②$a+4b+2b^2+2$の値は?
②次の各場合について、$\sqrt{ x^2+6+9 }$を$x$の整式で表そう。
③$x \geqq -3$
④$x \lt -3$
この動画を見る
◎$\displaystyle \frac{1}{2-\sqrt{ 3 }}$の整数部分を$a$、小数部分を$b$とする。
①$a,b$の値は?
②$a+4b+2b^2+2$の値は?
②次の各場合について、$\sqrt{ x^2+6+9 }$を$x$の整式で表そう。
③$x \geqq -3$
④$x \lt -3$
【高校数学】数Ⅰ-14 √(ルート)シリーズ②(因数分解とのコラボ編)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$x=\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 2 }},y=\displaystyle \frac{1}{\sqrt{ 5 }-\sqrt{ 2 }}$のとき、次の式の値を求めよう。
①$x+y$
②$xy$
③$x^2+y^2$
◎$x=\displaystyle \frac{\sqrt{ 6 }+\sqrt{ 2 }}{ 2 }$のとき、次の値を求めよう。
④$x+\displaystyle \frac{1}{x}$
⑤$x^2+\displaystyle \frac{1}{x^2}$
⑥$x^3+\displaystyle \frac{1}{x^3}$
この動画を見る
◎$x=\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 2 }},y=\displaystyle \frac{1}{\sqrt{ 5 }-\sqrt{ 2 }}$のとき、次の式の値を求めよう。
①$x+y$
②$xy$
③$x^2+y^2$
◎$x=\displaystyle \frac{\sqrt{ 6 }+\sqrt{ 2 }}{ 2 }$のとき、次の値を求めよう。
④$x+\displaystyle \frac{1}{x}$
⑤$x^2+\displaystyle \frac{1}{x^2}$
⑥$x^3+\displaystyle \frac{1}{x^3}$
【高校数学】数Ⅰ-13 √(ルート)シリーズ①(有理化編)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$
②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$
③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
この動画を見る
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$
②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$
③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
【高校数学】数Ⅰ-12 絶対値

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$ a \gt 0 $のとき$| a |$=①____、
$a=0$のとき$| a |$=②____
$a \lt 0$のとき$| a |$=③____となる。
◎次の値をもとめよう。
④$| 7 |$=
⑤$| -3 |$=
⑥$| -0.2 |$=
⑦$| -4 |-| 3 |$=
⑧$| \sqrt{ 5 }-3 |$=
◎aが次の値をとるとき、$| a+4 |+| a-3 |$の値は?
⑨$5$
⑩$\sqrt{ 6 }$
この動画を見る
$ a \gt 0 $のとき$| a |$=①____、
$a=0$のとき$| a |$=②____
$a \lt 0$のとき$| a |$=③____となる。
◎次の値をもとめよう。
④$| 7 |$=
⑤$| -3 |$=
⑥$| -0.2 |$=
⑦$| -4 |-| 3 |$=
⑧$| \sqrt{ 5 }-3 |$=
◎aが次の値をとるとき、$| a+4 |+| a-3 |$の値は?
⑨$5$
⑩$\sqrt{ 6 }$
【高校数学】数Ⅰ-11 因数分解④(3次式の公式編)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$a^3+b^3=$①____________、
$a^3-b^3=$②____________
◎因数分解しよう。
③$x^3+27$
④$8x^3-y^3$
⑤$x^3-3x^2+6x-8$
⑥$x^3-5x^2-4x+20$
この動画を見る
$a^3+b^3=$①____________、
$a^3-b^3=$②____________
◎因数分解しよう。
③$x^3+27$
④$8x^3-y^3$
⑤$x^3-3x^2+6x-8$
⑥$x^3-5x^2-4x+20$
【高校数学】数Ⅰ-10 因数分解③(応用編)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎因数分解しよう。
①$xy-x+2y-2$
②$x^2-8y+2xy-16$
③$x^2-(2a-3)x+a^2-3a+2$
④$x^2+5xy+6y^2-2x-7y-3$
この動画を見る
◎因数分解しよう。
①$xy-x+2y-2$
②$x^2-8y+2xy-16$
③$x^2-(2a-3)x+a^2-3a+2$
④$x^2+5xy+6y^2-2x-7y-3$
【高校数学】数Ⅰ-9 因数分解②(たすき掛け編)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎因数分解しよう
①$3x^2+5x+2$
②$6x^2+x-1$
③$5a^2+7a-6$
④$12x^2-23x+10$
⑤$6x^2-5xy-4y^2$
⑥$8x^2+14xy-15y^2$
この動画を見る
◎因数分解しよう
①$3x^2+5x+2$
②$6x^2+x-1$
③$5a^2+7a-6$
④$12x^2-23x+10$
⑤$6x^2-5xy-4y^2$
⑥$8x^2+14xy-15y^2$
【高校数学】数Ⅰ-8 因数分解①(基本編)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎因数分解しよう。
①$3ax^2-12a^2x$
②$x(x-5)+3(x-5)$
③$9x^2+12xy+4y^2$
④$50x^2-2y^2$
⑤$6a^3-54ab^2$
⑥$2x^2+14x+24$
⑦$x^2-(y-z)^2$
⑧$(x-y)^2+2(x-y)-24$
この動画を見る
◎因数分解しよう。
①$3ax^2-12a^2x$
②$x(x-5)+3(x-5)$
③$9x^2+12xy+4y^2$
④$50x^2-2y^2$
⑤$6a^3-54ab^2$
⑥$2x^2+14x+24$
⑦$x^2-(y-z)^2$
⑧$(x-y)^2+2(x-y)-24$
【高校数学】数Ⅰ-7 展開④(3次式の公式編)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$(a+b)^3=$①______,$(a+b)(a^2-ab+b^2)=$③______
$(a-b)^3=$②______,$(a-b)(a^2+ab+b^2)=$④______
◎展開しよう。
⑤$(x+3)^3$
⑥$(2x-y)^3$
⑦$(x-4)(x^2+4x+16)$
⑧$(3x+2y)(9x^2-6xy+4y^2)$
⑨$(a+b)^3(a-b)^3$
⑩$(x+y)^2(x^2-zy+y^2)^2$
この動画を見る
$(a+b)^3=$①______,$(a+b)(a^2-ab+b^2)=$③______
$(a-b)^3=$②______,$(a-b)(a^2+ab+b^2)=$④______
◎展開しよう。
⑤$(x+3)^3$
⑥$(2x-y)^3$
⑦$(x-4)(x^2+4x+16)$
⑧$(3x+2y)(9x^2-6xy+4y^2)$
⑨$(a+b)^3(a-b)^3$
⑩$(x+y)^2(x^2-zy+y^2)^2$
【高校数学】数Ⅰ-6 展開③(応用編)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎展開しよう。
①$(x+2y+3z)(x+2y-3z)$
②$(x^2+2x-4)(x^2-2x-4)$
③$(3x+3y-z)(x+y+z)$
④$(a+b-c-d)(a-b-c+d)$
⑤$(5x^2-xy-2y^2)(3x^2+2xy+y^2)$を展開したとき、$x^2y^2$の係数は?
この動画を見る
◎展開しよう。
①$(x+2y+3z)(x+2y-3z)$
②$(x^2+2x-4)(x^2-2x-4)$
③$(3x+3y-z)(x+y+z)$
④$(a+b-c-d)(a-b-c+d)$
⑤$(5x^2-xy-2y^2)(3x^2+2xy+y^2)$を展開したとき、$x^2y^2$の係数は?
【高校数学】数Ⅰ-5 展開②(練習編)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$(x+4y)(3x-2y)$
②$(-3x-y)(y-3x)$
③$(3m-a)(2m-5a)$
④$(3a-\displaystyle \frac{1}{2}b)^2$
⑤$(a+2b)^2(a-2b)^2$
⑥$(x-2)(x+2)(x^2+4)$
⑦$(x+y)^2(x-y)^2(x^2+y^2)^2$
⑧$(2a+b)(4a^2+b^2)(2a-b)$
この動画を見る
①$(x+4y)(3x-2y)$
②$(-3x-y)(y-3x)$
③$(3m-a)(2m-5a)$
④$(3a-\displaystyle \frac{1}{2}b)^2$
⑤$(a+2b)^2(a-2b)^2$
⑥$(x-2)(x+2)(x^2+4)$
⑦$(x+y)^2(x-y)^2(x^2+y^2)^2$
⑧$(2a+b)(4a^2+b^2)(2a-b)$
【高校数学】数Ⅰ-4 展開①(基本編)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎展開しよう。
①$(x-5y)^2$
②$(1-2x)^2$
③$(3x+y)(3x-y)$
④$(-a+b)(-a-b)$
⑤$(7x-2y)(2y+7x)$
⑥$(x+7)(x-2)$
⑦$(x-5y)(x+y)$
⑧$(x-4)(3x+5)$
⑨$(3a+2b)(a-3b)$
この動画を見る
◎展開しよう。
①$(x-5y)^2$
②$(1-2x)^2$
③$(3x+y)(3x-y)$
④$(-a+b)(-a-b)$
⑤$(7x-2y)(2y+7x)$
⑥$(x+7)(x-2)$
⑦$(x-5y)(x+y)$
⑧$(x-4)(3x+5)$
⑨$(3a+2b)(a-3b)$
【高校数学】数Ⅰ-3 指数法則

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$a^{m}×a^{n}=$①___,$(a^{m})^{n}=$②___,$(ab)^2=$③___
◎計算しよう。
④$a^3×a^2=$
⑤$5x×2x^2=$
⑥$(3a^4)^2=$
⑦$(-2ab^2)^3=$
⑧$6x^2y×(-3xy^2)^2=$
◎展開しよう。
⑨$(x^2-2xy-y^2)(x+3y)$
⑩$(x^23-2x)(5x-x^2+1)$
この動画を見る
$a^{m}×a^{n}=$①___,$(a^{m})^{n}=$②___,$(ab)^2=$③___
◎計算しよう。
④$a^3×a^2=$
⑤$5x×2x^2=$
⑥$(3a^4)^2=$
⑦$(-2ab^2)^3=$
⑧$6x^2y×(-3xy^2)^2=$
◎展開しよう。
⑨$(x^2-2xy-y^2)(x+3y)$
⑩$(x^23-2x)(5x-x^2+1)$
【高校数学】数Ⅰ-2 降べきの順

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎〔 〕内の文字について降べきの順に整理しよう。
①$x^2+3ax+2a^2-7x-a-3$〔a〕
②$4x^2+y^2-2xy+3y-1$〔y〕
◎$A=3x-y+2z,B=x-3y-z,C=2x+y-2z$のとき、次の式を計算しよう。
④$2A-B$
⑤$A+4C-{2A-(B-3C)}$
この動画を見る
◎〔 〕内の文字について降べきの順に整理しよう。
①$x^2+3ax+2a^2-7x-a-3$〔a〕
②$4x^2+y^2-2xy+3y-1$〔y〕
◎$A=3x-y+2z,B=x-3y-z,C=2x+y-2z$のとき、次の式を計算しよう。
④$2A-B$
⑤$A+4C-{2A-(B-3C)}$
