2次関数 - 質問解決D.B.(データベース)

2次関数

【数Ⅰ】【2次関数】2次関数 条件付きの解 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすように、定数mの値の範囲を定めよ。
 (1) 2次関数 y=x²+mx+1において、yの値が常に正である。
 (2) 放物線 y=x²-2mx+3m-2がy<0の部分を通らない。
 (3) 関数 y=mx²+4x+m-3において、yの値が常に負である。

2次関数 y=x²-mx+m+3のグラフの頂点が第1象限にあるとき、定数mの値の範囲を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数 解の個数、連立 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
mは定数とする。放物線 y=x²+(m+3)x+3m+4とx軸の共有点の個数を調べよ。

次の2次不等式の解がすべての実数であるとき、定数mの値の範囲を求めよ。
  (1) x²-mx+1>0   (2) -x²+mx+2m≦0

次の連立不等式を満たす整数xの値を全て求めよ。
  (1) 2x²-x-3<0 (2) x²+2x>1
  3x²-10x+3<0   x²-x≦6
この動画を見る 

【数Ⅰ】【2次関数】2次関数の解の範囲 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
  (1)  x²+2mx+3=0       (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
  (1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
  (1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
  (2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の点の通過 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線の方程式を求めよ。
 (1) 3点(-4,0),(-2,0),(0,-4)を通る。
 (2) 点(2,0)でx軸に接し、点(-2,12)を通る。

a,b,cの値を入力すると、関数 y=ax²+bx+c のグラフが表示されるコンピュータソフトがある。
あるa,b,cの値を入力すると、グラフは図のように表示された。
(1) a, b, c, b²-4ac, a+b+c の符号をいえ。
(2) このa,bの値を変えずに、cの値だけを変化させたとき、変わらないものを次の中からすべて選べ。
また、変わらない理由を説明せよ。
  ① グラフとx軸の共有点の個数
  ② グラフの頂点のx座標の符号
  ③ グラフの頂点のy座標の符号
この動画を見る 

【数Ⅰ】【2次関数】2次関数のグラフ応用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2次関数のグラフがx軸から切り取る線分の長さを求めよ。
 (1) y=x²-2x-8      (2) y=x²+6x+7

2次関数 y=x²-4x+2m のグラフとx軸の共有点の個数は,定数 m の値によってどのように変わるか。
この動画を見る 

【数Ⅰ】【2次関数】文字を含む2次方程式 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを定数とするとき,次の方程式を解け。
(1) a²x + 1 = a(x + 1)
(2) ax² + (a² - 1)x - a = 0

2つの2次方程式 x² + (m + 3)x + 8 = 0, x² + 5x + 4m = 0 が共通な実数解をもつように
定数mの値を定め, その共通な解を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の決定 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすような放物線の方程式を求めよ。
 (1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
 (2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。

2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。

(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大と最小条件式付き ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 2x+y=1のとき,x²+y²の最小値を求めよ。
(2) x+2y+3=0のとき,xyの最大値を求めよ。

x≧0, y≧0, x+y=4のとき,xのとりうる値の範囲を求めよ。また、x²+2y²の最大値と最小値を求めよ。
この動画を見る 

福田のおもしろ数学381〜三角形に内接する長方形と円の面積和の最大値

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ABCは二等辺がaの直角二等辺三角形である。また、図のように
三角形の内部に長方形と円を配置する。
図の長方形と円の面積和の最大値は?
この動画を見る 

【数Ⅰ】【2次関数】絶対値を含む関数のグラフ ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|

次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)

次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数y=x²+mx+2が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)この2次関数のグラフとx軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフとx軸のx<-1の部分が異なる2点で交わる。

放物線y=x²+2(m-1)x+5-m²がx軸の正の部分と負の部分のそれぞれと交わるように、定数mの値の範囲を定めよ。

2次方程式x²+2mx+2m+3=0が次のような実数解をもつように、定数mの値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のxについての不等式を解け。
(1)x2(a+2)x+2a<0
(2)x2(a1)xa>0
(3)x2ax2a20

不等式x2(a+1)x+a<0を満たす整数xがちょうど2個だけ存在するように、定数aの値の範囲を定めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの放物線y=x2+mx+3m,y=x2mx+m23が、いずれもx軸と共有点をもたないとき、定数mの値の範囲を求めよ。

2つの2次方程式x2+mx+m=0・・・・・・①、x22mx+m+6=0・・・・・・②がある。次の条件を満たすように、定数mの値の範囲を定めよ。
(1)①、②がともに異なる2つの実数解をもつ。
(2)①、②がともに実数解をもたない。
(3)①、②の少なくとも一方が実数解をもつ。
(4) ①、②のうち一方だけが、異なる2つの実数解をもつ。
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次不等式ax2+x+b>0の解がx<3,2<xであるとき、定数a,bの値を求めよ。

a,bは定数とする。2次不等式4x2+ax+b<0の解が1<x<54であるとき、2次不等式bx2+ax+40の解を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次不等式文章問題 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
立方体の縦を1cm短くし、横はそのまま、高さは2cm長くして直方体を作る。このとき、直方体の体積がもとの立方体の体積より大きくならないのは、もとの立方体の1辺の長さがどのような範囲にあるときか。

和が20である2つの整数の積が96以上になるとき、この2つの整数の組をすべて求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の文章題3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
AB=63CA=9C=90°の三角形ABCがある。
Pは頂点CからAまで辺CA上を毎秒3の速さで進む。
QPと同時に頂点Bを出発し、頂点Cまで辺BC上を毎秒3の速さで進む。
このP,Q間の距離の最小値を求めよ。

この動画を見る 

【数Ⅰ】【2次関数】2次関数の文章題2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
P(t,t2)は放物線y=x2上の点で、2点A(1,1)B(4,16)の間にある。このとき、三角形APBの面積の最大値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の文章題1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
周囲の長さが24cmである長方形について、次の問いに答えよ。
(1) この長方形の面積の最大値を求めよ。また、そのとき、長方形はどのような形か。
(2) この長方形の対角線を1辺とする正方形の面積の最小値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け11 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)=x2+2x+2(axa+1)の最大値をM(a)、最小値をm(a)とする。
(1)M(a)を求め、b=M(a)のグラフをかけ
(2)m(a)を求め、b=m(a)のグラフをかけ
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け10 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは定数とする。関数y=x22x+1(axa+1)について
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け9 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数y=x22x+mの値が0x3の範囲で常に負となるように、定数mの値の範囲を定めよ
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け8 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0とする。関数y=ax2+2ax+b(2x1)の最大値が6、最小値が3であるように、定数a,bの値を定めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数y=x22axa(0x2)の最小値が2であるように、定数aの値を定めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け6 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a<0とする。関数y=x2+2ax+3a(0x1)の最小値が11であるように、定数aの値を定めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け5 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
kは定数とする。2次関数y=x2+2kx+kの最小値をmとする。
(1) mkの関数である。mkの式で表せ。
(2) kの関数mの最大値とそのときのkの値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを定数とする。
2次関数y=x2+2ax(0x1)の最大値をM(a)とするとき、次の問いに答えよ。
(1) M(a)を求めよ
(2) b=M(a)のグラフをかけ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは正の定数とする。関数y=x22x1  (0xa)について、次の問いに答えよ。
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る 

【数Ⅰ】【2次関数】2次関数の対称移動3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=2x²-4x+1を、直線y=-2に関して対称移動して得られる放物線の方程式を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の対称移動2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある放物線を、x軸方向にー1、y軸方向にー3だけ平行移動し、さらにx軸に関して対称移動をしたら、放物線y=x²-2x+2に移った。もとの放物線の方程式を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の対称移動1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の直線、放物線を、x軸、y軸、原点に関して、それぞれ対称移動して得られる直線、放物線の方程式を求めよ。
(1)y=-x+1
(2)y=2x²+x
(3)y=-x²-x-6
この動画を見る 
PAGE TOP preload imagepreload image