2次関数

【数Ⅰ】【2次関数】2次関数 条件付きの解 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たすように、定数mの値の範囲を定めよ。
(1) 2次関数 y=x²+mx+1において、yの値が常に正である。
(2) 放物線 y=x²-2mx+3m-2がy<0の部分を通らない。
(3) 関数 y=mx²+4x+m-3において、yの値が常に負である。
2次関数 y=x²-mx+m+3のグラフの頂点が第1象限にあるとき、定数mの値の範囲を求めよ。
この動画を見る
次の条件を満たすように、定数mの値の範囲を定めよ。
(1) 2次関数 y=x²+mx+1において、yの値が常に正である。
(2) 放物線 y=x²-2mx+3m-2がy<0の部分を通らない。
(3) 関数 y=mx²+4x+m-3において、yの値が常に負である。
2次関数 y=x²-mx+m+3のグラフの頂点が第1象限にあるとき、定数mの値の範囲を求めよ。
【数Ⅰ】【2次関数】2次関数 解の個数、連立 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
mは定数とする。放物線 y=x²+(m+3)x+3m+4とx軸の共有点の個数を調べよ。
次の2次不等式の解がすべての実数であるとき、定数mの値の範囲を求めよ。
(1) x²-mx+1>0 (2) -x²+mx+2m≦0
次の連立不等式を満たす整数xの値を全て求めよ。
(1) 2x²-x-3<0 (2) x²+2x>1
3x²-10x+3<0 x²-x≦6
この動画を見る
mは定数とする。放物線 y=x²+(m+3)x+3m+4とx軸の共有点の個数を調べよ。
次の2次不等式の解がすべての実数であるとき、定数mの値の範囲を求めよ。
(1) x²-mx+1>0 (2) -x²+mx+2m≦0
次の連立不等式を満たす整数xの値を全て求めよ。
(1) 2x²-x-3<0 (2) x²+2x>1
3x²-10x+3<0 x²-x≦6
【数Ⅰ】【2次関数】2次関数の解の範囲 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
(1) x²+2mx+3=0 (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
(1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
(1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
(2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
この動画を見る
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
(1) x²+2mx+3=0 (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
(1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
(1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
(2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
【数Ⅰ】【2次関数】2次関数の点の通過 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線の方程式を求めよ。
(1) 3点(-4,0),(-2,0),(0,-4)を通る。
(2) 点(2,0)でx軸に接し、点(-2,12)を通る。
a,b,cの値を入力すると、関数 y=ax²+bx+c のグラフが表示されるコンピュータソフトがある。
あるa,b,cの値を入力すると、グラフは図のように表示された。
(1) a, b, c, b²-4ac, a+b+c の符号をいえ。
(2) このa,bの値を変えずに、cの値だけを変化させたとき、変わらないものを次の中からすべて選べ。
また、変わらない理由を説明せよ。
① グラフとx軸の共有点の個数
② グラフの頂点のx座標の符号
③ グラフの頂点のy座標の符号
この動画を見る
次の条件を満たす放物線の方程式を求めよ。
(1) 3点(-4,0),(-2,0),(0,-4)を通る。
(2) 点(2,0)でx軸に接し、点(-2,12)を通る。
a,b,cの値を入力すると、関数 y=ax²+bx+c のグラフが表示されるコンピュータソフトがある。
あるa,b,cの値を入力すると、グラフは図のように表示された。
(1) a, b, c, b²-4ac, a+b+c の符号をいえ。
(2) このa,bの値を変えずに、cの値だけを変化させたとき、変わらないものを次の中からすべて選べ。
また、変わらない理由を説明せよ。
① グラフとx軸の共有点の個数
② グラフの頂点のx座標の符号
③ グラフの頂点のy座標の符号
【数Ⅰ】【2次関数】2次関数のグラフ応用 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の2次関数のグラフがx軸から切り取る線分の長さを求めよ。
(1) y=x²-2x-8 (2) y=x²+6x+7
2次関数 y=x²-4x+2m のグラフとx軸の共有点の個数は,定数 m の値によってどのように変わるか。
この動画を見る
次の2次関数のグラフがx軸から切り取る線分の長さを求めよ。
(1) y=x²-2x-8 (2) y=x²+6x+7
2次関数 y=x²-4x+2m のグラフとx軸の共有点の個数は,定数 m の値によってどのように変わるか。
【数Ⅰ】【2次関数】文字を含む2次方程式 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを定数とするとき,次の方程式を解け。
(1) a²x + 1 = a(x + 1)
(2) ax² + (a² - 1)x - a = 0
2つの2次方程式 x² + (m + 3)x + 8 = 0, x² + 5x + 4m = 0 が共通な実数解をもつように
定数mの値を定め, その共通な解を求めよ。
この動画を見る
aを定数とするとき,次の方程式を解け。
(1) a²x + 1 = a(x + 1)
(2) ax² + (a² - 1)x - a = 0
2つの2次方程式 x² + (m + 3)x + 8 = 0, x² + 5x + 4m = 0 が共通な実数解をもつように
定数mの値を定め, その共通な解を求めよ。
【数Ⅰ】【2次関数】2次関数の決定 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
(2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。
2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。
(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
この動画を見る
次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
(2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。
2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。
(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
【数Ⅰ】【2次関数】2次関数の最大と最小条件式付き ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) 2x+y=1のとき,x²+y²の最小値を求めよ。
(2) x+2y+3=0のとき,xyの最大値を求めよ。
x≧0, y≧0, x+y=4のとき,xのとりうる値の範囲を求めよ。また、x²+2y²の最大値と最小値を求めよ。
この動画を見る
(1) 2x+y=1のとき,x²+y²の最小値を求めよ。
(2) x+2y+3=0のとき,xyの最大値を求めよ。
x≧0, y≧0, x+y=4のとき,xのとりうる値の範囲を求めよ。また、x²+2y²の最大値と最小値を求めよ。
福田のおもしろ数学381〜三角形に内接する長方形と円の面積和の最大値

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
は二等辺が の直角二等辺三角形である。また、図のように
三角形の内部に長方形と円を配置する。
図の長方形と円の面積和の最大値は?
この動画を見る
三角形の内部に長方形と円を配置する。
図の長方形と円の面積和の最大値は?
【数Ⅰ】【2次関数】絶対値を含む関数のグラフ ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|
次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)
次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
この動画を見る
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|
次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)
次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
【数Ⅰ】【2次関数】2次不等式応用4 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次関数y=x²+mx+2が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)この2次関数のグラフとx軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフとx軸のx<-1の部分が異なる2点で交わる。
放物線y=x²+2(m-1)x+5-m²がx軸の正の部分と負の部分のそれぞれと交わるように、定数mの値の範囲を定めよ。
2次方程式x²+2mx+2m+3=0が次のような実数解をもつように、定数mの値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
この動画を見る
2次関数y=x²+mx+2が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)この2次関数のグラフとx軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフとx軸のx<-1の部分が異なる2点で交わる。
放物線y=x²+2(m-1)x+5-m²がx軸の正の部分と負の部分のそれぞれと交わるように、定数mの値の範囲を定めよ。
2次方程式x²+2mx+2m+3=0が次のような実数解をもつように、定数mの値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
【数Ⅰ】【2次関数】2次不等式応用3 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の についての不等式を解け。
(1)
(2)
(3)
不等式 を満たす整数 がちょうど2個だけ存在するように、定数 の値の範囲を定めよ。
この動画を見る
次の
(1)
(2)
(3)
不等式
【数Ⅰ】【2次関数】2次不等式応用2 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの放物線 が、いずれも 軸と共有点をもたないとき、定数 の値の範囲を求めよ。
2つの2次方程式 ・・・・・・①、 ・・・・・・②がある。次の条件を満たすように、定数 の値の範囲を定めよ。
(1)①、②がともに異なる2つの実数解をもつ。
(2)①、②がともに実数解をもたない。
(3)①、②の少なくとも一方が実数解をもつ。
(4) ①、②のうち一方だけが、異なる2つの実数解をもつ。
この動画を見る
2つの放物線
2つの2次方程式
(1)①、②がともに異なる2つの実数解をもつ。
(2)①、②がともに実数解をもたない。
(3)①、②の少なくとも一方が実数解をもつ。
(4) ①、②のうち一方だけが、異なる2つの実数解をもつ。
【数Ⅰ】【2次関数】2次不等式応用1 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次不等式 の解が であるとき、定数 の値を求めよ。
は定数とする。2次不等式 の解が であるとき、2次不等式 の解を求めよ。
この動画を見る
2次不等式
【数Ⅰ】【2次関数】2次不等式文章問題 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
立方体の縦を1cm短くし、横はそのまま、高さは2cm長くして直方体を作る。このとき、直方体の体積がもとの立方体の体積より大きくならないのは、もとの立方体の1辺の長さがどのような範囲にあるときか。
和が20である2つの整数の積が96以上になるとき、この2つの整数の組をすべて求めよ。
この動画を見る
立方体の縦を1cm短くし、横はそのまま、高さは2cm長くして直方体を作る。このとき、直方体の体積がもとの立方体の体積より大きくならないのは、もとの立方体の1辺の長さがどのような範囲にあるときか。
和が20である2つの整数の積が96以上になるとき、この2つの整数の組をすべて求めよ。
【数Ⅰ】【2次関数】2次関数の文章題3 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
の三角形 がある。
点 は頂点 から まで辺 上を毎秒3の速さで進む。
点 は と同時に頂点 を出発し、頂点 まで辺 上を毎秒 の速さで進む。
この 間の距離の最小値を求めよ。
この動画を見る
点
点
この
【数Ⅰ】【2次関数】2次関数の文章題2 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
点 は放物線 上の点で、2点 の間にある。このとき、三角形 の面積の最大値を求めよ。
この動画を見る
点
【数Ⅰ】【2次関数】2次関数の文章題1 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
周囲の長さが24cmである長方形について、次の問いに答えよ。
(1) この長方形の面積の最大値を求めよ。また、そのとき、長方形はどのような形か。
(2) この長方形の対角線を1辺とする正方形の面積の最小値を求めよ。
この動画を見る
周囲の長さが24cmである長方形について、次の問いに答えよ。
(1) この長方形の面積の最大値を求めよ。また、そのとき、長方形はどのような形か。
(2) この長方形の対角線を1辺とする正方形の面積の最小値を求めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け11 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 の最大値を 、最小値を とする。
(1) を求め、 のグラフをかけ
(2) を求め、 のグラフをかけ
この動画を見る
関数
(1)
(2)
【数Ⅰ】【2次関数】2次関数の最大最小場合分け10 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
は定数とする。関数 について
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る
(1) 最小値を求めよ
(2) 最大値を求めよ
【数Ⅰ】【2次関数】2次関数の最大最小場合分け9 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 の値が の範囲で常に負となるように、定数 の値の範囲を定めよ
この動画を見る
関数
【数Ⅰ】【2次関数】2次関数の最大最小場合分け8 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
とする。関数 の最大値が6、最小値が3であるように、定数 の値を定めよ。
この動画を見る
【数Ⅰ】【2次関数】2次関数の最大最小場合分け7 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 の最小値が であるように、定数 の値を定めよ。
この動画を見る
関数
【数Ⅰ】【2次関数】2次関数の最大最小場合分け6 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
とする。関数 の最小値が であるように、定数 の値を定めよ。
この動画を見る
【数Ⅰ】【2次関数】2次関数の最大最小場合分け5 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
は定数とする。2次関数 の最小値を とする。
(1) は の関数である。 を の式で表せ。
(2) の関数 の最大値とそのときの の値を求めよ。
この動画を見る
(1)
(2)
【数Ⅰ】【2次関数】2次関数の最大最小場合分け4 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
を定数とする。
2次関数 の最大値を とするとき、次の問いに答えよ。
(1) を求めよ
(2) のグラフをかけ。
この動画を見る
2次関数
(1)
(2)
【数Ⅰ】【2次関数】2次関数の最大最小場合分け1 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
は正の定数とする。関数 について、次の問いに答えよ。
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る
(1) 最小値を求めよ
(2) 最大値を求めよ
【数Ⅰ】【2次関数】2次関数の対称移動3 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線y=2x²-4x+1を、直線y=-2に関して対称移動して得られる放物線の方程式を求めよ。
この動画を見る
放物線y=2x²-4x+1を、直線y=-2に関して対称移動して得られる放物線の方程式を求めよ。
【数Ⅰ】【2次関数】2次関数の対称移動2 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある放物線を、x軸方向にー1、y軸方向にー3だけ平行移動し、さらにx軸に関して対称移動をしたら、放物線y=x²-2x+2に移った。もとの放物線の方程式を求めよ。
この動画を見る
ある放物線を、x軸方向にー1、y軸方向にー3だけ平行移動し、さらにx軸に関して対称移動をしたら、放物線y=x²-2x+2に移った。もとの放物線の方程式を求めよ。
【数Ⅰ】【2次関数】2次関数の対称移動1 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の直線、放物線を、x軸、y軸、原点に関して、それぞれ対称移動して得られる直線、放物線の方程式を求めよ。
(1)y=-x+1
(2)y=2x²+x
(3)y=-x²-x-6
この動画を見る
次の直線、放物線を、x軸、y軸、原点に関して、それぞれ対称移動して得られる直線、放物線の方程式を求めよ。
(1)y=-x+1
(2)y=2x²+x
(3)y=-x²-x-6