三角比(三角比・拡張・相互関係・単位円)
【三角比 総まとめ!】三角比で必要な知識を「全て」まとめて解説!〔高校数学 数学〕
単元:
#数Ⅰ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
三角比で必要な知識を全てまとめました。
この動画を見る
三角比で必要な知識を全てまとめました。
福田のわかった数学〜高校1年生050〜図形の計量(1)内接四角形の面積
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 図形の計量(1)\\
AB=3,\ BC=5,\ CD=5,\ DA=6である\\
円に内接する四角形ABCDにおいて、\\
ACの長さ、四角形ABCDの面積Sを求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 図形の計量(1)\\
AB=3,\ BC=5,\ CD=5,\ DA=6である\\
円に内接する四角形ABCDにおいて、\\
ACの長さ、四角形ABCDの面積Sを求めよ。
\end{eqnarray}
福田のわかった数学〜高校1年生049〜三角形への応用(6)正弦定理の捉え方
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角形への応用(6)\\
\triangle ABCにおいて、\\
\sin A:\sin B:\sin C=3:5:7\\
のとき、最も大きい角の大きさは?
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 三角形への応用(6)\\
\triangle ABCにおいて、\\
\sin A:\sin B:\sin C=3:5:7\\
のとき、最も大きい角の大きさは?
\end{eqnarray}
日大山形 (改)円と角 2通りで解説
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照
日本大学山形高等学校(改)
この動画を見る
$\angle x=?$
*図は動画内参照
日本大学山形高等学校(改)
樟南高校 知っていれば一瞬!!
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
樟南高等学校
この動画を見る
x=?
*図は動画内参照
樟南高等学校
三重高校 面倒な計算はいらない。
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
P,Q,Rはそれぞれの円の中心
円Rの半径=10
RQ=?
*図は動画内参照
三重高等学校
この動画を見る
P,Q,Rはそれぞれの円の中心
円Rの半径=10
RQ=?
*図は動画内参照
三重高等学校
【単位円はこう使う!】三角不等式での単位円の使い方を4ステップで解説!〔高校数学 数学〕
定理・公式の使い方を整理!】三角比の定理の使い方を総整理!〔高校数学 数学〕
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
1.$\tan θ=\sqrt{ 2 }$のとき、$\cosθ$と$sinθ$を求めなさい($θ$は鋭角)
2.次の三角比を$90^\circ$以下の角の三角比で表せ
(1)$sin110^\circ$ (2)$cos120^\circ$ (3)$tan130^\circ$
3.次の△ABCにおいて$a$の長さを求め、面積も求めなさい
※図は動画参照
この動画を見る
1.$\tan θ=\sqrt{ 2 }$のとき、$\cosθ$と$sinθ$を求めなさい($θ$は鋭角)
2.次の三角比を$90^\circ$以下の角の三角比で表せ
(1)$sin110^\circ$ (2)$cos120^\circ$ (3)$tan130^\circ$
3.次の△ABCにおいて$a$の長さを求め、面積も求めなさい
※図は動画参照
日大山形(改) 弧の比何の比気になる比
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$
\stackrel{\huge\frown}{AQ}:\stackrel{\huge\frown}{QC} =?
$
*図は動画内参照
日本大学山形高等学校
この動画を見る
$
\stackrel{\huge\frown}{AQ}:\stackrel{\huge\frown}{QC} =?
$
*図は動画内参照
日本大学山形高等学校
福田のわかった数学〜高校1年生043〜三角比の相互関係(2)
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係(2)\\
\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)のとき\\
\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,\\
\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}の値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係(2)\\
\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)のとき\\
\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,\\
\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}の値を求めよ。
\end{eqnarray}
中学受験 算数 洛南高校附属中学
単元:
#算数(中学受験)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#過去問解説(学校別)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照
洛南高等学校附属中学校
この動画を見る
$\angle x=?$
*図は動画内参照
洛南高等学校附属中学校
【三角比の基礎はこれだけ!】三角比の基礎を全て解説!【高校数学 数学】
福田のわかった数学〜高校1年生042〜三角比の相互関係
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係\\
0° \lt \theta \lt 180°とする。\\
4\cos\theta+2\sin\theta=\sqrt2のとき\\
\tan\theta の値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係\\
0° \lt \theta \lt 180°とする。\\
4\cos\theta+2\sin\theta=\sqrt2のとき\\
\tan\theta の値を求めよ。
\end{eqnarray}
円とおうぎ形 高校入試
福田のわかった数学〜高校1年生041〜18°系の三角比
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 18°系の三角比\\
(1)1辺1の正五角形の対角線の長さを求めよ。\\
(2)\sin18°、\cos36°を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 18°系の三角比\\
(1)1辺1の正五角形の対角線の長さを求めよ。\\
(2)\sin18°、\cos36°を求めよ。
\end{eqnarray}
円と角 高校入試 数学
気づけば一瞬!!円周角の和
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle x + \angle y =$
*図は動画内参照
この動画を見る
$\angle x + \angle y =$
*図は動画内参照
円周角
福田のわかった数学〜高校1年生040〜22.5°の三角比
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 22.5°の三角比\\
\sin22.5°,\ \cos22.5°,\ \tan22.5°を求めよ。\\
ただし、分母は有利化すること。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 22.5°の三角比\\
\sin22.5°,\ \cos22.5°,\ \tan22.5°を求めよ。\\
ただし、分母は有利化すること。
\end{eqnarray}
福田のわかった数学〜高校1年生039〜15°の三角比
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 15°の三角比\\
\sin15°,\cos15°,\tan15°を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 15°の三角比\\
\sin15°,\cos15°,\tan15°を求めよ。
\end{eqnarray}
福田のわかった数学〜高校1年生038〜三角比、簡単な測量
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角比、簡単な測量\\
山の高さを測るために図の2地点A,B(※動画参照)から\\
仰角を測るとそれぞれ\alpha,\betaであった。\\
AB=xとすると、山の高さはいくらか。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 三角比、簡単な測量\\
山の高さを測るために図の2地点A,B(※動画参照)から\\
仰角を測るとそれぞれ\alpha,\betaであった。\\
AB=xとすると、山の高さはいくらか。
\end{eqnarray}
福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円
単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }} (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }} (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
円 東京学芸大学附属
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
この動画を見る
半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
円と直角三角形 B
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
この動画を見る
半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
円 学芸大学附属 B
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円の半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
この動画を見る
円の半径=5
BC=?
*図は動画内参照
東京学芸大学附属高校
垂線の長さの和=❓ B
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
DE+EF=?
*図は動画内参照
東北学院高等学校
この動画を見る
DE+EF=?
*図は動画内参照
東北学院高等学校
【高校数学】三角関数の性質の考え方~θ+2nπ, -θ, θ+π, θ+π/2~ 4-3 【数学Ⅱ】
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
たくさんある三角比の公式
覚えないといけないと思っていませんか!?
暗記は不要です!!
この動画を見る
たくさんある三角比の公式
覚えないといけないと思っていませんか!?
暗記は不要です!!
【数Ⅰ】図形と計量:三角比の表④演習 (1)sin60°(2)cos45°(3)tan120°(4)cos90°の値を求めよ。
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)sin60°(2)cos45°(3)tan120°(4)cos90°の値を求めよ。
この動画を見る
(1)sin60°(2)cos45°(3)tan120°(4)cos90°の値を求めよ。
【数Ⅰ】図形と計量:三角比の表③
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
・sin0°, sin90°, sin180°の値を求めよ。
・cos0°, cos90°, cos180°の値を求めよ。
・tan0°, tan90°, tan180°の値を求めよ。
この動画を見る
・sin0°, sin90°, sin180°の値を求めよ。
・cos0°, cos90°, cos180°の値を求めよ。
・tan0°, tan90°, tan180°の値を求めよ。
早稲田実業高 円の性質・角の二等分線の定理
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)半円の半径を求めよ.
(2)$AD$の長さを求めよ.
(3)$\triangle ADE$の長さを求めよ.
早稲田実業高過去問
この動画を見る
(1)半円の半径を求めよ.
(2)$AD$の長さを求めよ.
(3)$\triangle ADE$の長さを求めよ.
早稲田実業高過去問