図形と計量 - 質問解決D.B.(データベース) - Page 8

図形と計量

瞬殺せよ!傾き

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは正方形
m=?
*図は動画内参照
この動画を見る 

【中学からの!】余弦定理(1):三角比~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABC$において
$ a \cos B=b \cos A$ならばどんな三角形か.
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(4)〜角の二等分線と辺の長さの軽量

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(4)三角形$ABC$の$\angle A$の二等分線と辺$BC$との交点をDとする。
$AB=8,\ AC=3,\ AD=4$とするとき、

$BD:CD=\boxed{\ \ ソ\ \ }:\boxed{\ \ タ\ \ }$であり、
$BC=\frac{\boxed{\ \ チツ\ \ }\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}$である。

2022明治大学全統過去問
この動画を見る 

【超便利】三角比のあの面倒な公式は覚えなくていい【高校数学】 #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角比の導出方法に関して解説していきます。
この動画を見る 

この問題で差がつく!!円の良問 近江高校(滋賀)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
DE=?
*図は動画内参照
近江高等学校
この動画を見る 

【中学から分かる!】正弦定理(2):三角比 特別講義(トッコー)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABC$において,$a \sin A=b \sin B=c \sin C$ならばどんな三角形か.
この動画を見る 

気付けば一瞬!! 正六角形 九州学院(熊本)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AG:GC=?
*図は動画内参照

九州学院高等学校(改)
この動画を見る 

決め手は角度。大阪桐蔭

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△CDQ=?
*図は動画内参照

大阪桐蔭高等学校
この動画を見る 

【中学から学ぶ!】正弦定理(1):三角比 特別講義~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC$において$ \sin^2 A=\sin^2 B+\sin^2 C$ならばどんな三角形か.
この動画を見る 

三角形の面積の最大値  九州国際大附属(福岡)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
点Dは$\stackrel{\huge\frown}{AB}$上を動く△ADBの面積の最大値は?
*図は動画内参照

九州国際大学付属高等学校
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)$を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積を$D_1$で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積を$D_2$とおく。次の問いに答えよ。
(1)$D_1$を$p,q$を使って表せ。
(2)点$(2,2\sqrt3)$を中心とする半径1の円周をCとする。点BがC上を動くときの
$D_1$と$D_2$の積$D_1D_2$の最小値と最大値を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)座標空間内の4点$(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)$を頂点と
する四面体をP、4点$(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)$を頂点
とする四面体をQとする。RをPとQの共通部分とする。Rを平面$z=\frac{1}{3}$で
切ったときの切り口の面積を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

円 星稜

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AC=?
*図は動画内参照

星稜高等学校
この動画を見る 

高校1年生でも解ける!京大の入試問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$0≦θ<90°$とする。$x$についての4次方程式

{$x^2-2(\cosθ)x-\cosθ+1$}{$x^2+2(tanθ)x+3$}=0
は虚数解を少なくとも1つ持つことを示せ。

京都大過去問
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第1問(3)〜三角形の辺の関係から角の関係を求める

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)$\triangle ABC$において、3つの角の大きさをA,B,Cとし、
それぞれの対辺の長さをa,b,cとする。
$5a^2-5b^2+6bc-5c^2=0$
のとき、$\sin2A+\cos2A=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。

2022早稲田大学人間科学部過去問
この動画を見る 

【ここからでも楽しめる!】三角比の計算(4):特別講義(トッコー)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 2\sin \theta +3\cos \theta=1$のとき,$\theta$は第何象限の角か.
この動画を見る 

【中学からの!】三角比の計算(3):特別講義(トッコー)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sin\theta +\sqrt3 \cos \theta=1$のとき,$\sin\theta$の値を求めよ.
ただし,$\theta$は第2象限の角である.

この動画を見る 

【数学】中高一貫校用問題集:図形と式:軌跡と方程式:2直線の交点の軌跡(直交する場合)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#図形と計量#図形と方程式#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
mが実数全体を取って動くとき、$x+my-1=0,mx-y+2m=0$の交点Pの軌跡を求めよ
この動画を見る 

【数Ⅰ】相互関係式笑っちゃう覚え方

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
相互関係式笑っちゃう覚え方!
この動画を見る 

答えはわかるかもしれないけど、説明できる? 円周角 沖縄県(改)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x,y,zを小さい順に並べよ
*図は動画内参照

沖縄県(改)
この動画を見る 

意外と苦戦!?

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#三平方の定理#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
MN=?
*図は動画内参照

この動画を見る 

【中学からの!】三角比の計算(2):特別講義(トッコー)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sin\theta+\cos\theta=\dfrac{1}{2}$のとき,$\sin^3\theta+\cos^3\theta$の値を求めよ.
この動画を見る 

【中学からの!】三角比の計算(1):特別講義(トッコー)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sin\theta+\cos\theta=\dfrac{1}{2}$のとき,$\sin\theta\cos\theta$の値を求めよ.

この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第4問〜折り紙を折ってできる線分、角、面積を求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$一辺の長さが2の正方形の折り紙 ABCD を次の手順にしたがって折る。
(1) A と B、DとCを合わせて ADがBCに重なるように谷折りし、折り目をつけて
開く。AB および DC 上にあるこの谷折り線の端点をそれぞれEおよびFとする。
(2 ) AF が谷折り線になるよう に谷折りし、折り目をつけて開く。
(3) A を谷折り線の端点の1つとして、AB がAF 上に重なるように谷折りし、折り
目をつけて開く。BC上にあるこの谷折り線のもう1つの端点をGとする。
(4) D と A、CとBを合わせてDCがABに重なるように谷折りして、折り目をつけ
る。AD およびBC 上にあるこの谷折り線の端点をそれぞれHおよびIとする。
(5) C と B がいずれもGと重なるように2枚重ねて谷折りし、CIおよびBI 上に折り
目をつけて開く。この折り目の点をそれぞれ」およびKとする (A, E, B, K は
それぞれ D, F, C, J と重なっているため図中には表示していない)
(6) HI を谷折り線とする谷折りを開く (A, E, B, KはそれぞれD, F, C, J と重なって
いるため図中には表示していない)
(7) K を谷折り線の端点の1つとして、JがAB上に重なるように谷折りし、折り目
をつける。AD上にあるこの谷折り線のもう1つの端点をしとし、AB上にある
Jが重なる点をMとする。
(8)KLを谷折り戦とする谷折りを開く(MはJと重なっているため表示していない)
(9)Mを谷折り線の端点の1つとして、AとDがそれぞれBEとCF上にくるように
谷折りし、折り目をつけて開く。DC上にあるこの谷折り線のもう1つ端点を
Nとする。
(10)折るのをやめる。

このとき、
$BG=\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }},JK=\boxed{\ \ オカ\ \ }+\sqrt{\boxed{\ \ キク\ \ }},JM=\boxed{\ \ ケコ\ \ },$

$\cos\angle JKM=\frac{\boxed{\ \ サシ\ \ }+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }}$

ここで、$\triangle JKM$の面積を$S_1,\triangle JMN$の面積を$S_2$とすると

$\frac{S_2}{S_1}=\frac{\boxed{\ \ テト\ \ }+\sqrt{\boxed{\ \ ナニ\ \ }}}{\boxed{\ \ ヌネ\ \ }}$
となる。
※(1)~(10)の画像は動画参照

2022慶應義塾大学総合政策学部過去問
この動画を見る 

【中学生から理解できる!】三角比(さんかくひ)[ エッセンシャル版 ]:~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
三角比に関して解説していきます.
この動画を見る 

阪大の証明問題!解けますか?【数学 入試問題】【大阪大学 理系】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の自然数とする。三角形$ABC$において,辺$AB$の長さを$c$,辺$CA$の長さを$b$で表す。$ \angle ACB=n \angle ABC$であるとき,$ c<nb $を示せ。

大阪大理系過去問
この動画を見る 

阪大の証明問題!ぜひとも取りたい問題【数学 入試問題】【大阪大学 文系】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,辺$AB$の長さを$c$,辺$CA$の長さを$b$で表す。

$\angle ACB=3\angle ABC$であるとき,$c<3b$を示せ。

大阪大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第1問〜円に外接する四角形の性質

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の四角形ABCDは以下の条件を満たすとする。
$(\textrm{a})$頂点Aの座標は(-1,-1)である。
$(\textrm{b})$四角形の各辺は原点を中心とする半径1の円と接する。
$(\textrm{c})$$\angle BCD$は直角である。
また、辺ABの長さをlとし、$\angle ABC=\theta$とする。

(1)$\angle BAD=\frac{\pi}{\boxed{\ \ ア\ \ }}$である。

(2)辺CDの長さが$\frac{5}{3}$であるとき、$l=\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},\ \tan\theta=\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}$である。

(3)$\theta$は鋭角とする。四角形ABCDの面積が6であるとき、$l=\boxed{\ \ キ\ \ }+\sqrt{\boxed{\ \ ク\ \ }}$ ,

$\theta = \frac{\pi}{\boxed{\ \ ケ\ \ }}$である。

2022慶應義塾大学経済学部過去問
この動画を見る 

京大の三角比!気づければ簡単!【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\alpha,\beta$が$a>0°,\beta>0°,\alpha+\beta<180°$かつ$sin^2\alpha+sin^2\beta=sin^2(\alpha+\beta)$を満たすとき、
$sin\alpha+sin\beta$の取りうる範囲を求めよ。

京都大過去問
この動画を見る 

6次式の最大値と最小値!?【数学 入試問題】【自治医科大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$sin^6x+cos^6x$の最小値が$A$となるとき、$\dfrac{1}{A}$の値を求めよ。

自治医科大過去問
この動画を見る 
PAGE TOP