数Ⅰ

「二次関数の最大最小①」全パターン【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=2x^2-4x+c(-1 \leqq x \leqq 4)$の最大値が$7$となるような$c$の値を求めよ。
(2)関数$f(x)=ax^2-2ax+b(-1 \leqq x \leqq 2)$の最大値が$5$、最小値が$1$となるような$a,b$の値を求めよ。
2次関数$f(x)=x^2+2ax+2a-1(-2 \leqq x \leqq 3)$について、$a$の値が変化するときの最小値を$m(a)$とするとき、$m(a)$の最大値を求めよ。
この動画を見る
次の問いに答えよ。
(1)関数$f(x)=2x^2-4x+c(-1 \leqq x \leqq 4)$の最大値が$7$となるような$c$の値を求めよ。
(2)関数$f(x)=ax^2-2ax+b(-1 \leqq x \leqq 2)$の最大値が$5$、最小値が$1$となるような$a,b$の値を求めよ。
2次関数$f(x)=x^2+2ax+2a-1(-2 \leqq x \leqq 3)$について、$a$の値が変化するときの最小値を$m(a)$とするとき、$m(a)$の最大値を求めよ。
富山大(医) 無理数の証明

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$は異なる素数であり,$k,m,n$は整数である.
$k+m\sqrt p+n\sqrt q=0$なら,$k=m=n=0$を示せ.
(1)$\sqrt p$が無理数であることを示せ.
2016富山大(医)
この動画を見る
$p,q$は異なる素数であり,$k,m,n$は整数である.
$k+m\sqrt p+n\sqrt q=0$なら,$k=m=n=0$を示せ.
(1)$\sqrt p$が無理数であることを示せ.
2016富山大(医)
「二次関数の決定」全パターン【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件を満たす2次関数を求めよ。
(1)頂点が$(1,3)$で、点$(2,5)$を通る。
(2)軸が直線$x=2$で、2点$(0,-1),(-1,-6)$を通る。
(3)3点$(1,6),(-2,-9),(4,3)$を通る。
(4)3点$(-2,0),(3,0),(1,-12)$を通る。
(5)$y=2x^2$を平行移動したグラフで、点$(2,3)$を通り、頂点が直線$y=2x-1$上にある。
この動画を見る
次の条件を満たす2次関数を求めよ。
(1)頂点が$(1,3)$で、点$(2,5)$を通る。
(2)軸が直線$x=2$で、2点$(0,-1),(-1,-6)$を通る。
(3)3点$(1,6),(-2,-9),(4,3)$を通る。
(4)3点$(-2,0),(3,0),(1,-12)$を通る。
(5)$y=2x^2$を平行移動したグラフで、点$(2,3)$を通り、頂点が直線$y=2x-1$上にある。
「二次関数の平行移動・対称移動」全パターン【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$y=2x^2-4x+5$ ・・・①について
$y=2x^2-4x+5$
$\ =2(x^2-2x)+5$
$\ 2\{(x-1)^2-1\}+5$
$\ 2(x-1)^2+3$
であるから、頂点$(1,3)$となる。 ・・・②
(1)
①を$x$軸方向に$3,y$軸方向に$-4$平行移動して得られるグラフの方程式を求めよ。
(2)
①のグラフを$x$軸に関して対称移動させた関数の方程式を求めよ。
(3)
①のグラフを$y$軸に関して対称移動させた関数の方程式を求めよ。
(4)
①のグラフを原点に関して対称移動させた関数の方程式を求めよ。
(5)
$x$軸方向に$1,y$軸方向に$-2$平行移動して、$x$軸に関して対称移動させたグラフの方程式が①になるようなグラフの方程式を求めよ。
(6)
任意の実数$k$について2次関数$y=3x^2+kx-2k+1$のグラフは、ある定点を通る。
その定点の座標を求めよ。
この動画を見る
2次関数$y=2x^2-4x+5$ ・・・①について
$y=2x^2-4x+5$
$\ =2(x^2-2x)+5$
$\ 2\{(x-1)^2-1\}+5$
$\ 2(x-1)^2+3$
であるから、頂点$(1,3)$となる。 ・・・②
(1)
①を$x$軸方向に$3,y$軸方向に$-4$平行移動して得られるグラフの方程式を求めよ。
(2)
①のグラフを$x$軸に関して対称移動させた関数の方程式を求めよ。
(3)
①のグラフを$y$軸に関して対称移動させた関数の方程式を求めよ。
(4)
①のグラフを原点に関して対称移動させた関数の方程式を求めよ。
(5)
$x$軸方向に$1,y$軸方向に$-2$平行移動して、$x$軸に関して対称移動させたグラフの方程式が①になるようなグラフの方程式を求めよ。
(6)
任意の実数$k$について2次関数$y=3x^2+kx-2k+1$のグラフは、ある定点を通る。
その定点の座標を求めよ。
【二次関数の平行移動・対称移動】を宇宙一わかりやすく【高校数学ⅠA】

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
【高校数学ⅠA】二次関数の平行移動・対称移動についての解説動画です
この動画を見る
【高校数学ⅠA】二次関数の平行移動・対称移動についての解説動画です
【高校数学】2次関数の最大最小例題~放物線の軸に文字~ 2-4.5【数学Ⅰ】

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
関数$y=x^2-2ax+4(0 \leqq x \leqq 3)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る
関数$y=x^2-2ax+4(0 \leqq x \leqq 3)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
東大 三角比と漸化式

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.
(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)
1994東大過去問
この動画を見る
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.
(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)
1994東大過去問
「対偶法と背理法の証明②」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(3)
$\sqrt{ 2 }$が無理数であることを用いて$3-\sqrt{ 2 }$が無理数であることを示せ。
(4)
$\sqrt{ 6 }$が無理数であることを用いて$\sqrt{ 3 }-\sqrt{ 2 }$が無理数であることを示せ。
(5)
(ⅰ)$n^2$が$3$の倍数ならば、$n$が$3$の倍数であることを示せ。
(ⅱ)$\sqrt{ 3 }$が無理数であることを示せ。
この動画を見る
(3)
$\sqrt{ 2 }$が無理数であることを用いて$3-\sqrt{ 2 }$が無理数であることを示せ。
(4)
$\sqrt{ 6 }$が無理数であることを用いて$\sqrt{ 3 }-\sqrt{ 2 }$が無理数であることを示せ。
(5)
(ⅰ)$n^2$が$3$の倍数ならば、$n$が$3$の倍数であることを示せ。
(ⅱ)$\sqrt{ 3 }$が無理数であることを示せ。
県立広島大 ガウス記号を含む二次方程式

対偶法と背理法の証明の全パターン①【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$mn$が偶数ならば、$m,n$のうち少なくとも1つは偶数であることを示せ。
ただし、$m,n$は整数とする。
(2)
$\sqrt{ 2 }$が無理数であることを示せ。
この動画を見る
次の問いに答えよ。
(1)
$mn$が偶数ならば、$m,n$のうち少なくとも1つは偶数であることを示せ。
ただし、$m,n$は整数とする。
(2)
$\sqrt{ 2 }$が無理数であることを示せ。
【数Ⅰ】数と式:符号ミスをしない、1次不等式のオススメの解法を紹介!!

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
符号ミスをしない、1次不等式のオススメの解法を紹介!!
この動画を見る
符号ミスをしない、1次不等式のオススメの解法を紹介!!
必要条件と十分条件②【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
全体集合$U$について、その部分集合を$A,B,C$とする。
ただし、$A,B,C$はいずれも空集合ではない。
集合$A,B,C$が次の式を満たすとき、次の問いに答えよ。
$A \cap B \neq \varnothing,\ B \cap C=\varnothing,\ \overline{ A }\cap C=\varnothing$
(1)$x \in \overline{ C }$であることは、$x \in B$であるための[ア]
(2)$x \in C$であることは、$x \in A$であるための[イ]
(3)$x \in A \cap \overline{ C }$であることは、$x \in A \cap B$であるための[ウ]
⓪必要十分条件
①必要条件であるが、十分条件でない
②十分条件であるが、必要条件でない
③必要条件でも十分条件でもない
実数$x$に対する条件$p,q,r$を次のように定める。
$p:x$は無理数
$q:x+\sqrt{ 28 }$は有理数
$r:\sqrt{ 28 }x$は有理数
次の[ア]、[イ]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返し選んでもよい。
この動画を見る
全体集合$U$について、その部分集合を$A,B,C$とする。
ただし、$A,B,C$はいずれも空集合ではない。
集合$A,B,C$が次の式を満たすとき、次の問いに答えよ。
$A \cap B \neq \varnothing,\ B \cap C=\varnothing,\ \overline{ A }\cap C=\varnothing$
(1)$x \in \overline{ C }$であることは、$x \in B$であるための[ア]
(2)$x \in C$であることは、$x \in A$であるための[イ]
(3)$x \in A \cap \overline{ C }$であることは、$x \in A \cap B$であるための[ウ]
⓪必要十分条件
①必要条件であるが、十分条件でない
②十分条件であるが、必要条件でない
③必要条件でも十分条件でもない
実数$x$に対する条件$p,q,r$を次のように定める。
$p:x$は無理数
$q:x+\sqrt{ 28 }$は有理数
$r:\sqrt{ 28 }x$は有理数
次の[ア]、[イ]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返し選んでもよい。
必要条件と十分条件【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y,a,b$は実数とする。
次の[ア]~[ク]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返しで選んでもよい。
(1)$x=2$は、$x^2-x-2=0$であるための[ア]。
(2)$\triangle ABC \sim \triangle PQR$であるための[イ]
(3)$ab+1=a+b$は、$a=1$または$b=1$であるための[ウ]
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$
(6)$|a| \lt 1$かつ$|b| \lt 1$は、$ab+1 \gt a+b$であるための[カ]
(7)$xy(y-1)=0$であることは$x=y(y-1)=0$であるための[キ]
(8)$x^2y^2+(y-1)^2=0$であることは$x=y(y-1=0)$であるための[ク]
この動画を見る
$x,y,a,b$は実数とする。
次の[ア]~[ク]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返しで選んでもよい。
(1)$x=2$は、$x^2-x-2=0$であるための[ア]。
(2)$\triangle ABC \sim \triangle PQR$であるための[イ]
(3)$ab+1=a+b$は、$a=1$または$b=1$であるための[ウ]
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$
(6)$|a| \lt 1$かつ$|b| \lt 1$は、$ab+1 \gt a+b$であるための[カ]
(7)$xy(y-1)=0$であることは$x=y(y-1)=0$であるための[キ]
(8)$x^2y^2+(y-1)^2=0$であることは$x=y(y-1=0)$であるための[ク]
産業医大 2次方程式と3次方程式の共通解

単元:
#数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$と$x^2-x+q=0$が1つの共通解をもつ$p,q$の値を求めよ.
1996産業医大過去問
この動画を見る
$p$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$と$x^2-x+q=0$が1つの共通解をもつ$p,q$の値を求めよ.
1996産業医大過去問
【必要条件と十分条件】を宇宙一わかりやすく【高校数学ⅠA】

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
【高校数学ⅠA】必要条件と十分条件の解説動画です
この動画を見る
【高校数学ⅠA】必要条件と十分条件の解説動画です
【高校数学】2次関数の最大最小例題~定義域の片方に文字~ 2-4.5【数学Ⅰ】

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$a \gt 0$とする。
関数$y=x^2-4x+5(0 \leqq x \leqq a)$について
(1) 最大値を求めよ
(2) 最小値を求めよ
この動画を見る
$a \gt 0$とする。
関数$y=x^2-4x+5(0 \leqq x \leqq a)$について
(1) 最大値を求めよ
(2) 最小値を求めよ
論理と集合「集合の記号」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.
次の問いに答えよ。ただし、$\sqrt{ 7 }$は無理数であることを用いてよい。
$A$を有理数全体の集合、$B$を無理数全体の集合とし、空集合を$\varnothing$と表す。
次の(ⅰ)~(ⅳ)が真の命題となるように□に当てはまる記号を次の⓪~⑤の中から1つ選べ。
ただし、同じものを繰り返しでもよい。
(ⅰ)$A□\{0\}$
(ⅱ)$\sqrt{ 28 }□B$
(ⅲ)$A=\{-\}□A$
(ⅳ)$\varnothing=A□B$
⓪$ \in $
①$ \ni $
②$ \subset $
③$ \supset $
④$ \cap $
⑤$ \cup $
この動画を見る
1.
次の問いに答えよ。ただし、$\sqrt{ 7 }$は無理数であることを用いてよい。
$A$を有理数全体の集合、$B$を無理数全体の集合とし、空集合を$\varnothing$と表す。
次の(ⅰ)~(ⅳ)が真の命題となるように□に当てはまる記号を次の⓪~⑤の中から1つ選べ。
ただし、同じものを繰り返しでもよい。
(ⅰ)$A□\{0\}$
(ⅱ)$\sqrt{ 28 }□B$
(ⅲ)$A=\{-\}□A$
(ⅳ)$\varnothing=A□B$
⓪$ \in $
①$ \ni $
②$ \subset $
③$ \supset $
④$ \cap $
⑤$ \cup $
【数字の分類】を宇宙一わかりやすく【高校数学ⅠA】

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
【高校数学ⅠA】数字の分類についての解説動画です
この動画を見る
【高校数学ⅠA】数字の分類についての解説動画です
一次不等式「定数a入り」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の方程式、不等式を解け。
(1)$ax=3$
(2)$ax \gt 3$
(3)$ax \leqq 3$
(4)$(a-2)x=a^2-4$
(5)$(a-2)x \gt a^2-4$
(6)$(a-2)x \leqq a^2-4$
(7)$(a+1)(a-3)x=(a-3)(a+2)$
次の不等式、連立不等式を解け。
(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
x-a \leqq 3 \\
2x+1 \gt a
\end{array}
\right.
\end{eqnarray}$
(2)$|ax+3| \lt 5$
次の方程式、不等式を解け。
(1)$|x-3|=2$
(2)$|2x-1| \geqq 5$
(3)$|x+4| \lt 2$
この動画を見る
次の方程式、不等式を解け。
(1)$ax=3$
(2)$ax \gt 3$
(3)$ax \leqq 3$
(4)$(a-2)x=a^2-4$
(5)$(a-2)x \gt a^2-4$
(6)$(a-2)x \leqq a^2-4$
(7)$(a+1)(a-3)x=(a-3)(a+2)$
次の不等式、連立不等式を解け。
(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
x-a \leqq 3 \\
2x+1 \gt a
\end{array}
\right.
\end{eqnarray}$
(2)$|ax+3| \lt 5$
次の方程式、不等式を解け。
(1)$|x-3|=2$
(2)$|2x-1| \geqq 5$
(3)$|x+4| \lt 2$
名古屋市立大 基本対称式

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+b+c=2$
$ab+bc+ca=3$
$abc=2$のとき,$a^5+b^5+c^5$の値を求めよ.
2012名古屋市立大過去問
この動画を見る
$a+b+c=2$
$ab+bc+ca=3$
$abc=2$のとき,$a^5+b^5+c^5$の値を求めよ.
2012名古屋市立大過去問
北海道医療大(薬・歯)式の計算

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\dfrac{\sqrt5-1}{2}$である.
$\dfrac{1}{a}+\dfrac{1}{a^3}+\dfrac{1}{a^5}+\dfrac{1}{a^7}$の値を求めよ.
北海道医療大(薬・歯)過去問
この動画を見る
$a=\dfrac{\sqrt5-1}{2}$である.
$\dfrac{1}{a}+\dfrac{1}{a^3}+\dfrac{1}{a^5}+\dfrac{1}{a^7}$の値を求めよ.
北海道医療大(薬・歯)過去問
一次不等式「絶対値」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の方程式、不等式を解け。
(1)$|x-3|=2$
(2)$|2x-1 \geqq 5|$
(3)$|x+4| \lt 2$
(4)$|x+1|=3x$
(5)$|2x-6| \gt x+1$
(6)$|x+2|+|x-1|=4x+1$
(7)$|x+2|+|x-1| \lt x+3$
(8)$\sqrt{ x^2+4x+4 }+\sqrt{ x^2-2x+1 }=4x+1$
この動画を見る
次の方程式、不等式を解け。
(1)$|x-3|=2$
(2)$|2x-1 \geqq 5|$
(3)$|x+4| \lt 2$
(4)$|x+1|=3x$
(5)$|2x-6| \gt x+1$
(6)$|x+2|+|x-1|=4x+1$
(7)$|x+2|+|x-1| \lt x+3$
(8)$\sqrt{ x^2+4x+4 }+\sqrt{ x^2-2x+1 }=4x+1$
一次不等式の全パターン【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
不等式$2x-3 \gt x+1$について、次の問いに答えよ。
(1)不等式の解が$x \gt 2$となるように、定数$a$の値を求めよ。
(2)不等式の解が$x=5$を含むように、定数$a$の範囲を求めよ。
$a$を定数とする。2つの不等式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x-4)-1 \gt -3(2x+11) ・・・① \\
4x+2a \lt 3x+2 ・・・②
\end{array}
\right.
\end{eqnarray}$
をともに満たす整数$x$がちょうど3個となるような$a$の値の範囲を求めよ。
この動画を見る
不等式$2x-3 \gt x+1$について、次の問いに答えよ。
(1)不等式の解が$x \gt 2$となるように、定数$a$の値を求めよ。
(2)不等式の解が$x=5$を含むように、定数$a$の範囲を求めよ。
$a$を定数とする。2つの不等式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x-4)-1 \gt -3(2x+11) ・・・① \\
4x+2a \lt 3x+2 ・・・②
\end{array}
\right.
\end{eqnarray}$
をともに満たす整数$x$がちょうど3個となるような$a$の値の範囲を求めよ。
大阪市立大 無理数の証明

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$m,n$を自然数とし,$m\gt n$とする.$2^{\frac{n}{m}}$は無理数であることを示せ.
(2)$2^{\frac{1}{3}}$は有理数係数の2次方程式の解にならないことを示せ.
1993大阪市立大過去問
この動画を見る
(1)$m,n$を自然数とし,$m\gt n$とする.$2^{\frac{n}{m}}$は無理数であることを示せ.
(2)$2^{\frac{1}{3}}$は有理数係数の2次方程式の解にならないことを示せ.
1993大阪市立大過去問
数と式の全パターン②【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
$\displaystyle \frac{1}{3-\sqrt{ 5 }}$の整数部分を$a$、小数部分を$b$とする。
(1)$a,b$の値を求めよ。
(2)$b^1+\displaystyle \frac{1}{2}b$の値を求めよ。
ーーーーーーーーーーーーーーーーーーーーーー
$x=\sqrt{ 2 }-1$のとき
$x^2+4x^2+3x^2+2x+1$
ーーーーーーーーーーーーーーーーーーーーーー
次の式の二重根号をはずして簡単にせよ。
(1)$\sqrt{ 5+2\sqrt{ 6 } }$
(2)$\sqrt{ 7-4\sqrt{ 3 } }$
(3)$\sqrt{ 8+\sqrt{ 60 } }$
(4)$\sqrt{ 3+\sqrt{ 5 } }$
この動画を見る
次の問いに答えよ。
$\displaystyle \frac{1}{3-\sqrt{ 5 }}$の整数部分を$a$、小数部分を$b$とする。
(1)$a,b$の値を求めよ。
(2)$b^1+\displaystyle \frac{1}{2}b$の値を求めよ。
ーーーーーーーーーーーーーーーーーーーーーー
$x=\sqrt{ 2 }-1$のとき
$x^2+4x^2+3x^2+2x+1$
ーーーーーーーーーーーーーーーーーーーーーー
次の式の二重根号をはずして簡単にせよ。
(1)$\sqrt{ 5+2\sqrt{ 6 } }$
(2)$\sqrt{ 7-4\sqrt{ 3 } }$
(3)$\sqrt{ 8+\sqrt{ 60 } }$
(4)$\sqrt{ 3+\sqrt{ 5 } }$
数と式の全パターン①【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.次の式の分母を有理化せよ。
$\displaystyle \frac{1}{1+\sqrt{ 2 }+\sqrt{ 3 }}$
2.次の問いに答えよ。
$x=\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }}{\sqrt{ 5 }-\sqrt{ 3 }},\ y=\displaystyle \frac{\sqrt{ 5 }-\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}$のとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$
3.次の問いに答えよ。
$x+\displaystyle \frac{1}{x}=3$のとき、次の式の値を求めよ。
(1)$x^2+\displaystyle \frac{1}{x^2}$
(2)$x-\displaystyle \frac{1}{x}$
(3)$x-^3+\displaystyle \frac{1}{x^3}$
(4)$x^4+\displaystyle \frac{1}{x^4}$
この動画を見る
1.次の式の分母を有理化せよ。
$\displaystyle \frac{1}{1+\sqrt{ 2 }+\sqrt{ 3 }}$
2.次の問いに答えよ。
$x=\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }}{\sqrt{ 5 }-\sqrt{ 3 }},\ y=\displaystyle \frac{\sqrt{ 5 }-\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}$のとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$
3.次の問いに答えよ。
$x+\displaystyle \frac{1}{x}=3$のとき、次の式の値を求めよ。
(1)$x^2+\displaystyle \frac{1}{x^2}$
(2)$x-\displaystyle \frac{1}{x}$
(3)$x-^3+\displaystyle \frac{1}{x^3}$
(4)$x^4+\displaystyle \frac{1}{x^4}$
【高校数学】2次関数の最大最小~考え方を身に付けよう~ 2-4【数学Ⅰ】

金沢大 N進法の循環小数

単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#金沢大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z$は1桁の自然数とする.
$N=\boxed{x}\boxed{y}.\boxed{z}_{(5)}$,$N-1=\boxed{z}\boxed{y}.\boxed{x}_{(7)}$
$(x,y,z)$の値を求めよ.
1969金沢大過去問
この動画を見る
$x,y,z$は1桁の自然数とする.
$N=\boxed{x}\boxed{y}.\boxed{z}_{(5)}$,$N-1=\boxed{z}\boxed{y}.\boxed{x}_{(7)}$
$(x,y,z)$の値を求めよ.
1969金沢大過去問
一橋大(2)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\neq 0$は実数である.
$x-\dfrac{1}{x}$が$0$でない整数であるとき,$x^2-\dfrac{1}{x^2}$は整数出ないことを示せ.
1991一橋大過去問
この動画を見る
$x\neq 0$は実数である.
$x-\dfrac{1}{x}$が$0$でない整数であるとき,$x^2-\dfrac{1}{x^2}$は整数出ないことを示せ.
1991一橋大過去問
【高校数学】2次関数~平行移動・対称移動の混合問題~ 2-3.5【数学Ⅰ】

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
放物線$y=ax^2+bx+c$を$x$軸方向に4、$y$軸方向に-2だけ平行移動した後
$x$軸に関して対称移動したものの方程式が$y=2x^2-6x-4$になった。
定数$a,b,c$を求めよ。
この動画を見る
放物線$y=ax^2+bx+c$を$x$軸方向に4、$y$軸方向に-2だけ平行移動した後
$x$軸に関して対称移動したものの方程式が$y=2x^2-6x-4$になった。
定数$a,b,c$を求めよ。