確率
福田の数学〜慶應義塾大学2022年薬学部第1問(4)〜2次関数と積分の確率
単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (4)f(x)はxの2次関数である。f(x)はx=-2で極値をとり、\int_{-3}^0f(x)dx=0\\
を満たす。またxy平面上において、f(x)のグラフy=f(x)はx軸と異なる2点で交わり、\\
y=f(x)とx軸で囲まれる部分の面積は\frac{8}{3}である。このときf(x)=\boxed{\ \ キ\ \ }である。
\end{eqnarray}
2022慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ (4)f(x)はxの2次関数である。f(x)はx=-2で極値をとり、\int_{-3}^0f(x)dx=0\\
を満たす。またxy平面上において、f(x)のグラフy=f(x)はx軸と異なる2点で交わり、\\
y=f(x)とx軸で囲まれる部分の面積は\frac{8}{3}である。このときf(x)=\boxed{\ \ キ\ \ }である。
\end{eqnarray}
2022慶應義塾大学薬学部過去問
福田の数学〜京都大学2022年理系第2問〜連続しない自然数を選ぶ確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 箱の中に1からnまでの番号の付いたn枚の札がある。ただし、n \geqq 5とし、\\
同じ番号の札はないとする。この箱から3枚の札を同時に取り出し、札の番号を\\
小さい順にX,Y,Zとする。このとき、Y-X \geqq 2かつZ-Y \geqq 2となる確率を\\
求めよ。
\end{eqnarray}
2022京都大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ 箱の中に1からnまでの番号の付いたn枚の札がある。ただし、n \geqq 5とし、\\
同じ番号の札はないとする。この箱から3枚の札を同時に取り出し、札の番号を\\
小さい順にX,Y,Zとする。このとき、Y-X \geqq 2かつZ-Y \geqq 2となる確率を\\
求めよ。
\end{eqnarray}
2022京都大学理系過去問
福田の数学〜慶應義塾大学2022年薬学部第1問(3)〜部屋わけ・グループ分けの確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (3)3つの部屋A,B,Cがある。この3つの部屋に対して、複数の生徒が以下の\\
試行(*)を繰り返し行うことを考える。\\
(*)\left\{
\begin{array}{1}
・生徒それぞれが部屋を無作為に1つ選んで入る。\\
・生徒全員が部屋に入ったら、各部屋の生徒の人数を確認する。\\
・生徒全員が部屋を出る。\\
・1人の生徒しかいない部屋があった場合、その部屋に入った生徒は\\
次回以降の試行に参加しない。\\
\end{array}
\right.\\
\\
(\textrm{i})4人の生徒が試行(*)を1回行ったとき、2回目の試行に参加する生徒が\\
3人になる確率は\boxed{\ \ オ\ \ }である。\\
(\textrm{ii})5人の生徒が試行(*)を続けて2回行ったとき、3回目の試行に参加する\\
生徒が2人になる確率は\boxed{\ \ カ\ \ }である。
\end{eqnarray}
2022慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ (3)3つの部屋A,B,Cがある。この3つの部屋に対して、複数の生徒が以下の\\
試行(*)を繰り返し行うことを考える。\\
(*)\left\{
\begin{array}{1}
・生徒それぞれが部屋を無作為に1つ選んで入る。\\
・生徒全員が部屋に入ったら、各部屋の生徒の人数を確認する。\\
・生徒全員が部屋を出る。\\
・1人の生徒しかいない部屋があった場合、その部屋に入った生徒は\\
次回以降の試行に参加しない。\\
\end{array}
\right.\\
\\
(\textrm{i})4人の生徒が試行(*)を1回行ったとき、2回目の試行に参加する生徒が\\
3人になる確率は\boxed{\ \ オ\ \ }である。\\
(\textrm{ii})5人の生徒が試行(*)を続けて2回行ったとき、3回目の試行に参加する\\
生徒が2人になる確率は\boxed{\ \ カ\ \ }である。
\end{eqnarray}
2022慶應義塾大学薬学部過去問
福田の数学〜東京慈恵会医科大学2022年医学部第1問〜確率の基本性質
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 袋Aには白玉2個、赤玉1個、袋Bには白玉1個、赤玉2個が入っている。\\
この状態から始めて、次の操作を繰り返し行う。\\
操作\\
① 袋A、袋Bから玉を1個ずつ取り出す。\\
② (\textrm{i})取り出した2個の玉の色が同じである場合は、取り出した玉を2個とも\\
袋Aに入れる。\\
(\textrm{ii})取り出した2個の玉の色が異なる場合は、袋Aから取り出した玉は袋B\\
に入れ、袋Bから取り出した玉は袋Aに入れる。\\
このとき、\\
・操作を2回繰り返した後に袋Aに入っている赤玉の個数が1個である確率は\boxed{\ \ (ア)\ \ }\\
・操作を3回繰り返した後に袋Aに入っている赤玉の個数が0個である確率は\boxed{\ \ (イ)\ \ }\\
である。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ 袋Aには白玉2個、赤玉1個、袋Bには白玉1個、赤玉2個が入っている。\\
この状態から始めて、次の操作を繰り返し行う。\\
操作\\
① 袋A、袋Bから玉を1個ずつ取り出す。\\
② (\textrm{i})取り出した2個の玉の色が同じである場合は、取り出した玉を2個とも\\
袋Aに入れる。\\
(\textrm{ii})取り出した2個の玉の色が異なる場合は、袋Aから取り出した玉は袋B\\
に入れ、袋Bから取り出した玉は袋Aに入れる。\\
このとき、\\
・操作を2回繰り返した後に袋Aに入っている赤玉の個数が1個である確率は\boxed{\ \ (ア)\ \ }\\
・操作を3回繰り返した後に袋Aに入っている赤玉の個数が0個である確率は\boxed{\ \ (イ)\ \ }\\
である。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
順天堂(医)確率 基本
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
ある1つの箱から とり出して戻すを3回行ったら
●●○となった
箱がAである確率を求めよ
2022年順天堂医学大学 過去問
この動画を見る
ある1つの箱から とり出して戻すを3回行ったら
●●○となった
箱がAである確率を求めよ
2022年順天堂医学大学 過去問
福田の共通テスト解答速報〜2022年共通テスト数学IA問題3。プレゼントの交換の確率の問題。
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは\\
全て異なるとする。\\
プレゼントの交換は次の手順で行う。\\
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、\\
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の\\
プレゼントを受け取る。\\
\\
交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。\\
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。\\
(1)2人または3人で交換会を開く場合を考える。\\
(\textrm{i})2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は\\
\boxed{\ \ ア\ \ }通りある。したがって1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}である。\\
(\textrm{ii})3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は\\
\boxed{\ \ エ\ \ }通りある。したがって1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}である。\\
(\textrm{iii})3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}である。\\
\\
\\
(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を\\
次の構想に基づいて求めてみよう。\\
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。\\
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。\\
\\
1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は\\
\boxed{\ \ サ\ \ }通りあり、ちょうど2人が自分のプレゼントを受け取る場合は\boxed{\ \ シ\ \ }通りある。\\
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が\\
終了しない受け取り方の総数は\boxed{\ \ スセ\ \ }である。\\
したがって、1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。\\
\\
(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}である。\\
\\
(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外\\
の人の持参したプレゼントを受け取った時、その回で交換会が終了する\\
条件付き確率は\frac{\boxed{\ \ ナニ\ \ }}{\boxed{\ \ ヌネ\ \ }}である。\\
\end{eqnarray}
2022共通テスト数学過去問
この動画を見る
\begin{eqnarray}
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは\\
全て異なるとする。\\
プレゼントの交換は次の手順で行う。\\
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、\\
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の\\
プレゼントを受け取る。\\
\\
交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。\\
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。\\
(1)2人または3人で交換会を開く場合を考える。\\
(\textrm{i})2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は\\
\boxed{\ \ ア\ \ }通りある。したがって1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}である。\\
(\textrm{ii})3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は\\
\boxed{\ \ エ\ \ }通りある。したがって1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}である。\\
(\textrm{iii})3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}である。\\
\\
\\
(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を\\
次の構想に基づいて求めてみよう。\\
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。\\
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。\\
\\
1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は\\
\boxed{\ \ サ\ \ }通りあり、ちょうど2人が自分のプレゼントを受け取る場合は\boxed{\ \ シ\ \ }通りある。\\
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が\\
終了しない受け取り方の総数は\boxed{\ \ スセ\ \ }である。\\
したがって、1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。\\
\\
(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}である。\\
\\
(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外\\
の人の持参したプレゼントを受け取った時、その回で交換会が終了する\\
条件付き確率は\frac{\boxed{\ \ ナニ\ \ }}{\boxed{\ \ ヌネ\ \ }}である。\\
\end{eqnarray}
2022共通テスト数学過去問
福田のわかった数学〜高校1年生091〜確率(11)反復試行の確率(5)東京大学の問題
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(11) 反復試行(5)\\
格子点上を次の規則で点\textrm{P}が動く。\\
(\textrm{a})最初、点\textrm{P}は原点にある。\\
(\textrm{b})ある時刻で点\textrm{P}が(m,n)にあるとき、その1秒後の点\textrm{P}の位置は等確率で\\
(m+1,n), (m,n+1), (m,n-1), (m-1,n)である。\\
6秒後に点\textrm{P}が直線y=x上にある確率を求めよ。
\end{eqnarray}
東京大学過去問
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(11) 反復試行(5)\\
格子点上を次の規則で点\textrm{P}が動く。\\
(\textrm{a})最初、点\textrm{P}は原点にある。\\
(\textrm{b})ある時刻で点\textrm{P}が(m,n)にあるとき、その1秒後の点\textrm{P}の位置は等確率で\\
(m+1,n), (m,n+1), (m,n-1), (m-1,n)である。\\
6秒後に点\textrm{P}が直線y=x上にある確率を求めよ。
\end{eqnarray}
東京大学過去問
福田のわかった数学〜高校1年生090〜確率(10)反復試行の確率(4)
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(10) 反復試行(4)\\
正六角形ABCDEFの頂点Aに石を置いて、コインを投げて\\
表が出れば2、裏が出れば1、石を時計周りに動かし、最初に\\
Aに戻った時を上がりとする。次の確率を求めよ。\\
(1)ちょうど1周で上がり (2)ちょうど2周で上がり
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(10) 反復試行(4)\\
正六角形ABCDEFの頂点Aに石を置いて、コインを投げて\\
表が出れば2、裏が出れば1、石を時計周りに動かし、最初に\\
Aに戻った時を上がりとする。次の確率を求めよ。\\
(1)ちょうど1周で上がり (2)ちょうど2周で上がり
\end{eqnarray}
福田のわかった数学〜高校1年生089〜確率(9)反復試行の確率(3)
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(9) 反復試行(3)\\
点Pをxy平面上の原点におき、次の規則で動かす。\\
さいころを1回振るごとに\\
1,2,3の目が出たらx軸方向へ1平行移動\\
4,5の目が出たらy軸方向へ1平行移動\\
6の目が出たらx軸方向へ1、y軸方向へ1平行移動\\
さいころを6回振って点Pが(5,3)に位置する確率を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(9) 反復試行(3)\\
点Pをxy平面上の原点におき、次の規則で動かす。\\
さいころを1回振るごとに\\
1,2,3の目が出たらx軸方向へ1平行移動\\
4,5の目が出たらy軸方向へ1平行移動\\
6の目が出たらx軸方向へ1、y軸方向へ1平行移動\\
さいころを6回振って点Pが(5,3)に位置する確率を求めよ。
\end{eqnarray}
福田のわかった数学〜高校1年生088〜確率(8)反復試行の確率(2)
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(7) 反復試行(2)\\
AとBが先に4勝したほうを勝ちとする試合をする。\\
1回の試合でAが勝つ確率をpとして引き分けはないものとする。\\
(1)6試合目でAが勝つ確率を求めよ。\\
(2)Aが勝つ確率を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(7) 反復試行(2)\\
AとBが先に4勝したほうを勝ちとする試合をする。\\
1回の試合でAが勝つ確率をpとして引き分けはないものとする。\\
(1)6試合目でAが勝つ確率を求めよ。\\
(2)Aが勝つ確率を求めよ。
\end{eqnarray}
福田のわかった数学〜高校1年生087〜確率(7)反復試行の確率(1)
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(7) 反復試行(1)\\
さいころをn回振った時に\\
(1)1の目がr回出る確率を求めよ。\\
(2)1の目がj回、2の目がk回出る確率を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(7) 反復試行(1)\\
さいころをn回振った時に\\
(1)1の目がr回出る確率を求めよ。\\
(2)1の目がj回、2の目がk回出る確率を求めよ。
\end{eqnarray}
福田のわかった数学〜高校1年生086〜確率(6)じゃんけんの確率(2)
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(6) じゃんけん(2)\\
4人でじゃんけんをして負けたもの\\
から抜けていく。3回で1人の勝者\\
が決まる確率を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(6) じゃんけん(2)\\
4人でじゃんけんをして負けたもの\\
から抜けていく。3回で1人の勝者\\
が決まる確率を求めよ。
\end{eqnarray}
福田のわかった数学〜高校1年生085〜確率(5)じゃんけんの確率(1)
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(4) じゃんけん(1)\\
n人でじゃんけんを1回する。 (n \geqq 3)\\
(1)r人が勝つ確率を求めよ。 (0 \lt r \lt n)\\
(2)あいこになる確率を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(4) じゃんけん(1)\\
n人でじゃんけんを1回する。 (n \geqq 3)\\
(1)r人が勝つ確率を求めよ。 (0 \lt r \lt n)\\
(2)あいこになる確率を求めよ。
\end{eqnarray}
福田のわかった数学〜高校1年生084〜確率(4)さいころの目の最大と最小の確率
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(4) さいころの目(2)\\
さいころをn回投げて出た目の最大値が5\\
で最小値が3である確率を求めよ。ただし、n \geqq 2とする。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(4) さいころの目(2)\\
さいころをn回投げて出た目の最大値が5\\
で最小値が3である確率を求めよ。ただし、n \geqq 2とする。
\end{eqnarray}
コインを投げる 確率
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
○×問題 コインを投げる
(1)2枚投げた時、表1枚裏1枚になる確率は$\frac{1}{2}$
(2)4枚投げた時、表2枚裏2枚になる確率は$\frac{1}{2}$
この動画を見る
○×問題 コインを投げる
(1)2枚投げた時、表1枚裏1枚になる確率は$\frac{1}{2}$
(2)4枚投げた時、表2枚裏2枚になる確率は$\frac{1}{2}$
福田のわかった数学〜高校1年生083〜確率(3)さいころの目の積の確率
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(3) さいころの目(1)\\
さいころをn回投げて出た目の積が6の倍数となる\\
確率を求めよ。ただし、nは2以上の自然数とする。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(3) さいころの目(1)\\
さいころをn回投げて出た目の積が6の倍数となる\\
確率を求めよ。ただし、nは2以上の自然数とする。
\end{eqnarray}
【数A】確率:期待値の巧みな利用
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#その他#その他#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
【高校数学 数学A 場合の数と確率 期待値】
無限に続く階段がある。さいころを振って出た目の数だけ登っては立ち止まるということを繰り返す。このとき十分上の方のとある段に立ち止まる確率を求めよ。
(出典 上級国家公務員試験より)
この動画を見る
【高校数学 数学A 場合の数と確率 期待値】
無限に続く階段がある。さいころを振って出た目の数だけ登っては立ち止まるということを繰り返す。このとき十分上の方のとある段に立ち止まる確率を求めよ。
(出典 上級国家公務員試験より)
福田のわかった数学〜高校1年生082〜確率(2)くじ引き(2)
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(2) くじ引き(2)\\
10本中1等賞が2本、2等賞が3本入ったくじから\\
5人が順に1本ずつ引いていく。(元に戻さない)\\
4人目が1等賞、5人目が2等賞に当たる確率を\\
求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(2) くじ引き(2)\\
10本中1等賞が2本、2等賞が3本入ったくじから\\
5人が順に1本ずつ引いていく。(元に戻さない)\\
4人目が1等賞、5人目が2等賞に当たる確率を\\
求めよ。
\end{eqnarray}
福田のわかった数学〜高校1年生081〜確率(1)くじ引き(1)
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(1) くじ引き(1)\\
10本中3本当たりのくじから\\
(1)同時に3本のくじを引いたとき、1本だけ当たる確率を求めよ。\\
(2)A,B,Cの3人が順に1本ずつ引いたとき(元に戻さない)、\\
1人だけが当たる確率を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{A} 確率(1) くじ引き(1)\\
10本中3本当たりのくじから\\
(1)同時に3本のくじを引いたとき、1本だけ当たる確率を求めよ。\\
(2)A,B,Cの3人が順に1本ずつ引いたとき(元に戻さない)、\\
1人だけが当たる確率を求めよ。
\end{eqnarray}
気付けば一瞬!!の確率の問題 東奥義塾
単元:
#数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
1⃣ 2⃣ 3⃣ 4⃣ 5⃣
の5枚のカードから3枚のカードを並べてできる3ケタの整数で
奇数となる確率は?
東奥義塾高等学校
この動画を見る
1⃣ 2⃣ 3⃣ 4⃣ 5⃣
の5枚のカードから3枚のカードを並べてできる3ケタの整数で
奇数となる確率は?
東奥義塾高等学校
【演習で復習・解説!】条件付き確率を5分で復習!〔数学 高校数学〕
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
大小のサイコロを1個ずつ投げた。このとき以下の2つの事象を定義する。
A: 大きいサイコロの目が4
B: サイコロの目の和が9
以下の問に答えよ。
(1)事象Aが起こる確率と事象Bが起こる確率をそれぞれ求めよ。
(2)事象Bが起こった時の事象Aが起こる条件付き確率を求めよ。
この動画を見る
大小のサイコロを1個ずつ投げた。このとき以下の2つの事象を定義する。
A: 大きいサイコロの目が4
B: サイコロの目の和が9
以下の問に答えよ。
(1)事象Aが起こる確率と事象Bが起こる確率をそれぞれ求めよ。
(2)事象Bが起こった時の事象Aが起こる条件付き確率を求めよ。
福田の数学〜立教大学2021年経済学部第1問(3)〜さいころの確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 3個のさいころを1回投げるとき、出た目の最大値が3となる確率は\\
\ \boxed{\ \ エ\ \ }\ であり、また、出た目の積が8となる確率は\ \boxed{\ \ オ\ \ }\ である。
\end{eqnarray}
2021立教大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 3個のさいころを1回投げるとき、出た目の最大値が3となる確率は\\
\ \boxed{\ \ エ\ \ }\ であり、また、出た目の積が8となる確率は\ \boxed{\ \ オ\ \ }\ である。
\end{eqnarray}
2021立教大学経済学部過去問
藤井聡太 三冠 竜王奪取の確率を計算する
福田の数学〜立教大学2021年理学部第1問(3)〜じゃんけんの確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 4人でじゃんけんを1回するとき、ちょうど2人が勝つ確率は\ \boxed{\ \ ウ\ \ }\ であり、\\
また、だれも勝たない確率は\ \boxed{\ \ エ\ \ }\ である。\hspace{130pt}
\end{eqnarray}
2021立教大学理学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 4人でじゃんけんを1回するとき、ちょうど2人が勝つ確率は\ \boxed{\ \ ウ\ \ }\ であり、\\
また、だれも勝たない確率は\ \boxed{\ \ エ\ \ }\ である。\hspace{130pt}
\end{eqnarray}
2021立教大学理学部過去問
福田の数学〜明治大学2021年理工学部第2問〜格子点と確率
単元:
#数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#大学入試解答速報#数学#明治大学#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} nを正の整数とする。座標平面上の点でx座標とy座標がともに整数であるもの\hspace{40pt}\\
を格子点と呼ぶ。|x|+|y|=2n\ を満たす格子点(x,\ y)全体の集合をD_{2n}とする。\\
(1)D_4は\ \boxed{\ \ あ\ \ }\ 個の点からなる。一般に、D_{2n}は\ \boxed{\ \ い\ \ }\ 個の点からなる。\\
(2)D_{2n}に属する点(x,\ y)で|x-2n|+|y|=2nを満たすものは全部で\ \boxed{\ \ う\ \ }\ 個ある。\\
(3)D_{2n}に属する点(x,\ y)で|x-n|+|y-n|=2nを満たすものは全部で\ \boxed{\ \ え\ \ }\ 個ある。\\
(4)D_{2n}から異なる2点(x_1,\ y_1),\ (x_2,\ y_2)を無作為に選ぶとき、\\
|x_1-x_2|+|y_1-y_2|=2n\\
が成り立つ確率は\ \boxed{\ \ お\ \ }\ である。
\end{eqnarray}
2021明治大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} nを正の整数とする。座標平面上の点でx座標とy座標がともに整数であるもの\hspace{40pt}\\
を格子点と呼ぶ。|x|+|y|=2n\ を満たす格子点(x,\ y)全体の集合をD_{2n}とする。\\
(1)D_4は\ \boxed{\ \ あ\ \ }\ 個の点からなる。一般に、D_{2n}は\ \boxed{\ \ い\ \ }\ 個の点からなる。\\
(2)D_{2n}に属する点(x,\ y)で|x-2n|+|y|=2nを満たすものは全部で\ \boxed{\ \ う\ \ }\ 個ある。\\
(3)D_{2n}に属する点(x,\ y)で|x-n|+|y-n|=2nを満たすものは全部で\ \boxed{\ \ え\ \ }\ 個ある。\\
(4)D_{2n}から異なる2点(x_1,\ y_1),\ (x_2,\ y_2)を無作為に選ぶとき、\\
|x_1-x_2|+|y_1-y_2|=2n\\
が成り立つ確率は\ \boxed{\ \ お\ \ }\ である。
\end{eqnarray}
2021明治大学理工学部過去問
【数A】中高一貫校問題集3(論理・確率編)171:場合の数と確率:反復試行の確率(ひっかけあり!!):先に3勝する確率
単元:
#数A#場合の数と確率#確率#数学(高校生)
教材:
#TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
AとBが試合を行い、先に3勝した方を優勝者とする。各試合でAが勝つ確率は2/3で引き分けはないとする。このとき、Aが優勝する確率を求めよ。
この動画を見る
AとBが試合を行い、先に3勝した方を優勝者とする。各試合でAが勝つ確率は2/3で引き分けはないとする。このとき、Aが優勝する確率を求めよ。
ガチャ問題 東大大島さんと数学
福田の数学〜青山学院大学2021年理工学部第1問〜さいころの目の最大最小の確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 1個のさいころを4回投げるとき、出た目の最小値をm、最大値をMとする。\\
(1)m \geqq 2となる確率は\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカキ\ \ }}であり、m=1となる確率は\frac{\boxed{\ \ クケコ\ \ }}{\boxed{\ \ サシスセ\ \ }}である。\\
(2)m \geqq 2かつM \leqq 5となる確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}であり、m \geqq 2かつM=6となる確率は\\
\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニヌ\ \ }}である。\\
\\
(3)m=1かつM=6となる確率は\frac{\boxed{\ \ ネノハ\ \ }}{\boxed{\ \ ヒフヘ\ \ }}である。
\end{eqnarray}
2021青山学院大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} 1個のさいころを4回投げるとき、出た目の最小値をm、最大値をMとする。\\
(1)m \geqq 2となる確率は\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカキ\ \ }}であり、m=1となる確率は\frac{\boxed{\ \ クケコ\ \ }}{\boxed{\ \ サシスセ\ \ }}である。\\
(2)m \geqq 2かつM \leqq 5となる確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}であり、m \geqq 2かつM=6となる確率は\\
\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニヌ\ \ }}である。\\
\\
(3)m=1かつM=6となる確率は\frac{\boxed{\ \ ネノハ\ \ }}{\boxed{\ \ ヒフヘ\ \ }}である。
\end{eqnarray}
2021青山学院大学理工学部過去問
対等性とは?僕と君は対等な関係 法政大学高校
単元:
#数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
H,O,S,E,Iの5文字を1列に並べるときHがSより左にある場合の数を求めよ。
法政大学高等学校
この動画を見る
H,O,S,E,Iの5文字を1列に並べるときHがSより左にある場合の数を求めよ。
法政大学高等学校
福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。\\
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に\\
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に\\
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結\\
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、\\
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。\\
(1)m=3の時を考える。n=1ならば、畑の数は常に3個で、1通りある。\\
n=2ならば、畑の数は3個、5個、6個で3通りある。n=3ならば、畑の数は\\
\boxed{\ \ ク\ \ }通りある。n=10ならば、畑の数は\boxed{\ \ ケ\ \ }通りある。\\
(2)m=3でn=3のとき、畑の数が8個になる植え方は\boxed{\ \ コ\ \ }通りある。\\
(3)m=6のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り\\
あるが、それらすべてが等確率になるように植えることにする。n=2のとき、\\
畑が8個である確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}であり、畑が9個である確率は\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
畑が10個である確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。n=3のとき、\\
畑が10個である確率をpとすると\boxed{\ \ け\ \ }である。\\
\\
\\
\boxed{\ \ け\ \ }の選択肢:\\
(\textrm{a})p \geqq \frac{1}{100} (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100} (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}\\
(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500} (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000} (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}\\
(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000} (\textrm{h})p \lt \frac{1}{10000}
\end{eqnarray}
2021上智大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。\\
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に\\
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に\\
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結\\
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、\\
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。\\
(1)m=3の時を考える。n=1ならば、畑の数は常に3個で、1通りある。\\
n=2ならば、畑の数は3個、5個、6個で3通りある。n=3ならば、畑の数は\\
\boxed{\ \ ク\ \ }通りある。n=10ならば、畑の数は\boxed{\ \ ケ\ \ }通りある。\\
(2)m=3でn=3のとき、畑の数が8個になる植え方は\boxed{\ \ コ\ \ }通りある。\\
(3)m=6のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り\\
あるが、それらすべてが等確率になるように植えることにする。n=2のとき、\\
畑が8個である確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}であり、畑が9個である確率は\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
畑が10個である確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。n=3のとき、\\
畑が10個である確率をpとすると\boxed{\ \ け\ \ }である。\\
\\
\\
\boxed{\ \ け\ \ }の選択肢:\\
(\textrm{a})p \geqq \frac{1}{100} (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100} (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}\\
(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500} (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000} (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}\\
(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000} (\textrm{h})p \lt \frac{1}{10000}
\end{eqnarray}
2021上智大学理系過去問