図形の性質

2023高校入試解説36問目 正八角形の外接円の面積=❓ 中大杉並

単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
正八角形の面積=?
円の面積=?
*図は動画内参照
2023中央大学杉並高等学校(改)
この動画を見る
正八角形の面積=?
円の面積=?
*図は動画内参照
2023中央大学杉並高等学校(改)
2023高校入試解説28問目 あの条件発動 早稲田本庄

単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$BD^2 = DE・DF$
$\angle ADB = ?$
*図は動画内参照
2023早稲田大学 本庄高等学院
この動画を見る
$BD^2 = DE・DF$
$\angle ADB = ?$
*図は動画内参照
2023早稲田大学 本庄高等学院
放物線と二等辺三角形 国立高専

単元:
#数学(中学生)#中3数学#数A#図形の性質#三平方の定理#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=\frac{1}{4}x^2$
P=?
*図は動画内参照
国立高専
この動画を見る
$y=\frac{1}{4}x^2$
P=?
*図は動画内参照
国立高専
この長さを求める 国立高専←漢字間違えてしまいました。

単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\stackrel{\huge\frown}{BE}$=?
*図は動画内参照
国立高専
この動画を見る
$\stackrel{\huge\frown}{BE}$=?
*図は動画内参照
国立高専
【高校数学】裏技!円に内接する四角形の面積の求め方! #Shorts

単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
四角形$ABCD$の面積$S$を求めよ。
この動画を見る
四角形$ABCD$の面積$S$を求めよ。
福田の1.5倍速演習〜合格する重要問題100〜慶應義塾大学2020年度総合政策学部第3問〜半円に接する5つの円

単元:
#数A#大学入試過去問(数学)#図形の性質#三平方の定理#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。
2020慶應義塾大学総合政策学部過去問
この動画を見る
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。
2020慶應義塾大学総合政策学部過去問
五角形の面積=❓ 芝浦工大柏 〇〇先生登場!!

福田の数学〜2023年共通テスト速報〜数学IIB第2問微分積分〜円錐に内接する円柱の体積の最大と桜の開花予想

単元:
#数A#数Ⅱ#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
第2問
[1](1)kを正の定数とし、次の3次関数を考える。
$f(x)=x^2(k-x)$
y=f(x)のグラフとx軸との共有点の座標は(0, 0)と($\boxed{\boxed{\ \ ア\ \ }}$, 0)である。
f(x)の導関数f'(x)は
f'(x)=$\boxed{\ \ イウ\ \ }x^2+\boxed{\ \ エ\ \ }kx$
である。
x=$\boxed{\boxed{\ \ オ\ \ }}$のとき、f(x)は極小値$\boxed{\boxed{\ \ カ\ \ }}$をとる。
x=$\boxed{\boxed{\ \ キ\ \ }}$のとき、f(x)は極大値$\boxed{\boxed{\ \ ク\ \ }}$をとる。
また、0<x<kの範囲においてx=$\boxed{\boxed{\ \ キ\ \ }}$のときf(x)は最大となることがわかる。
$\boxed{\boxed{\ \ ア\ \ }}$, $\boxed{\boxed{\ \ オ\ \ }}$~$\boxed{\boxed{\ \ ク\ \ }}$ の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①$\frac{1}{3}k$ ②$\frac{1}{2}k$ ③$\frac{2}{3}k$
④k ⑤$\frac{3}{2}k$ ⑥$-4k^2$ ⑦$\frac{1}{8}k^2$
⑧$\frac{2}{27}k^3$ ⑨$\frac{4}{27}k^3$ ⓐ$\frac{4}{9}k^3$ ⓑ$4k^3$
(2)後の図のように底面が半径9の円で高さが15の円錐に内接する円柱を考える。円柱の底面の半径と体積をそれぞれx, Vとする。Vをxの式で表すと
V=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi x^2(\boxed{\ \ サ\ \ }-x)$(0<x<9)
である。(1)の考察より、x=$\boxed{\ \ シ\ \ }$のときVは最大となることがわかる。Vの最大値は$\boxed{\ \ スセソ\ \ }\pi$である。
[2](1)定積分$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$の値は$\boxed{\ \ タチツ\ \ }$である。
また、関数$\displaystyle\frac{1}{100}x^2-\frac{1}{6}x+5$の不定積分は
$\displaystyle\int(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=$\displaystyle\frac{1}{\boxed{\ \ テトナ\ \ }}x^3-\frac{1}{\boxed{\ \ ニヌ\ \ }}x^2+\boxed{\ \ ネ\ \ }x+C$である。ただし、Cは積分定数とする。
(2)ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題になる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってからの気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの気温の折れ線グラフを見ながら、次のように考えることにした。(※図1は動画参照)
xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)また、x日後の気温をy℃とする。このとき、yはxの関数であり、これをy=f(x)とおく。ただし、yは負にはならないものとする。
気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の設定で考えることにした。
設定:正の実数tに対して、f(x)を0からtまで積分した値をS(t)とする。すなわち、S(t)=$\displaystyle\int_0^tf(x)dx$とする。このS(t)が400に到達したとき、ソメイヨシノが開花する。
設定のもと、太郎さんは気温を表す関数y=f(x)のグラフを図2(※動画参照)のように直線とみなしてソメイヨシノの開花日時を考えることにした。
(i)太郎さんは
$f(x)=\displaystyle\frac{1}{5}x+3$ (x ≧0)
として考えた。このとき、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ノ\ \ }}$となる。
$\boxed{\boxed{\ \ ノ\ \ }}$の解答群
⓪30日後 ①35日後 ②40日後
③45日後 ④50日後 ⑤55日後
⑥60日後 ⑦65日後
(ii)太郎さんと花子さんは、2月に入ってから30日後以降の気温について話をしている。
太郎:1次関数を用いてソメイヨシノの開花日時を求めてみたよ。
花子:気温の上がり方から考えて、2月に入ってから30日後以降の気温を表す関数が2次関数の場合も考えて見ようか。
花子さんは気温を表す関数f(x)を、0≦x≦30のときは太郎さんと同じように
f(x)=$\frac{1}{5}x+3$ ...①
とし、x≧30のときは
f(x)=$\frac{1}{100}x^2-\frac{1}{6}x+5$ ...②
として考えた。なお、x=30のとき①の右辺の値と②の右辺の値は一致する。花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より
$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$=$\boxed{\ \ タチツ\ \ }$
であり
$\displaystyle\int_{30}^{40}(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=115
となることがわかる。
また、x ≧30の範囲においてf(x)は増加する。よって
$\displaystyle\int_{30}^{40}f(x)dx$ $\boxed{\boxed{\ \ ハ\ \ }}$ $\displaystyle\int_{40}^{50}f(x)dx$
であることがわかる。以上より、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ヒ\ \ }}$となる。
2023共通テスト過去問
この動画を見る
第2問
[1](1)kを正の定数とし、次の3次関数を考える。
$f(x)=x^2(k-x)$
y=f(x)のグラフとx軸との共有点の座標は(0, 0)と($\boxed{\boxed{\ \ ア\ \ }}$, 0)である。
f(x)の導関数f'(x)は
f'(x)=$\boxed{\ \ イウ\ \ }x^2+\boxed{\ \ エ\ \ }kx$
である。
x=$\boxed{\boxed{\ \ オ\ \ }}$のとき、f(x)は極小値$\boxed{\boxed{\ \ カ\ \ }}$をとる。
x=$\boxed{\boxed{\ \ キ\ \ }}$のとき、f(x)は極大値$\boxed{\boxed{\ \ ク\ \ }}$をとる。
また、0<x<kの範囲においてx=$\boxed{\boxed{\ \ キ\ \ }}$のときf(x)は最大となることがわかる。
$\boxed{\boxed{\ \ ア\ \ }}$, $\boxed{\boxed{\ \ オ\ \ }}$~$\boxed{\boxed{\ \ ク\ \ }}$ の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①$\frac{1}{3}k$ ②$\frac{1}{2}k$ ③$\frac{2}{3}k$
④k ⑤$\frac{3}{2}k$ ⑥$-4k^2$ ⑦$\frac{1}{8}k^2$
⑧$\frac{2}{27}k^3$ ⑨$\frac{4}{27}k^3$ ⓐ$\frac{4}{9}k^3$ ⓑ$4k^3$
(2)後の図のように底面が半径9の円で高さが15の円錐に内接する円柱を考える。円柱の底面の半径と体積をそれぞれx, Vとする。Vをxの式で表すと
V=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi x^2(\boxed{\ \ サ\ \ }-x)$(0<x<9)
である。(1)の考察より、x=$\boxed{\ \ シ\ \ }$のときVは最大となることがわかる。Vの最大値は$\boxed{\ \ スセソ\ \ }\pi$である。
[2](1)定積分$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$の値は$\boxed{\ \ タチツ\ \ }$である。
また、関数$\displaystyle\frac{1}{100}x^2-\frac{1}{6}x+5$の不定積分は
$\displaystyle\int(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=$\displaystyle\frac{1}{\boxed{\ \ テトナ\ \ }}x^3-\frac{1}{\boxed{\ \ ニヌ\ \ }}x^2+\boxed{\ \ ネ\ \ }x+C$である。ただし、Cは積分定数とする。
(2)ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題になる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってからの気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの気温の折れ線グラフを見ながら、次のように考えることにした。(※図1は動画参照)
xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)また、x日後の気温をy℃とする。このとき、yはxの関数であり、これをy=f(x)とおく。ただし、yは負にはならないものとする。
気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の設定で考えることにした。
設定:正の実数tに対して、f(x)を0からtまで積分した値をS(t)とする。すなわち、S(t)=$\displaystyle\int_0^tf(x)dx$とする。このS(t)が400に到達したとき、ソメイヨシノが開花する。
設定のもと、太郎さんは気温を表す関数y=f(x)のグラフを図2(※動画参照)のように直線とみなしてソメイヨシノの開花日時を考えることにした。
(i)太郎さんは
$f(x)=\displaystyle\frac{1}{5}x+3$ (x ≧0)
として考えた。このとき、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ノ\ \ }}$となる。
$\boxed{\boxed{\ \ ノ\ \ }}$の解答群
⓪30日後 ①35日後 ②40日後
③45日後 ④50日後 ⑤55日後
⑥60日後 ⑦65日後
(ii)太郎さんと花子さんは、2月に入ってから30日後以降の気温について話をしている。
太郎:1次関数を用いてソメイヨシノの開花日時を求めてみたよ。
花子:気温の上がり方から考えて、2月に入ってから30日後以降の気温を表す関数が2次関数の場合も考えて見ようか。
花子さんは気温を表す関数f(x)を、0≦x≦30のときは太郎さんと同じように
f(x)=$\frac{1}{5}x+3$ ...①
とし、x≧30のときは
f(x)=$\frac{1}{100}x^2-\frac{1}{6}x+5$ ...②
として考えた。なお、x=30のとき①の右辺の値と②の右辺の値は一致する。花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より
$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$=$\boxed{\ \ タチツ\ \ }$
であり
$\displaystyle\int_{30}^{40}(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=115
となることがわかる。
また、x ≧30の範囲においてf(x)は増加する。よって
$\displaystyle\int_{30}^{40}f(x)dx$ $\boxed{\boxed{\ \ ハ\ \ }}$ $\displaystyle\int_{40}^{50}f(x)dx$
であることがわかる。以上より、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ヒ\ \ }}$となる。
2023共通テスト過去問
正方形と角度

おうぎ形の面積 数学YouTuberが今流行りの数学YouTuberについて語る

2023高校入試解説17問目 3つの内接円 渋谷教育学園幕張

単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
青○:半径3
緑○:半径4
赤○:半径=?
*図は動画内参照
2023渋谷教育学園幕張高等学校(改)
この動画を見る
青○:半径3
緑○:半径4
赤○:半径=?
*図は動画内参照
2023渋谷教育学園幕張高等学校(改)
福田の数学〜2023年共通テスト速報〜数学IA第5問図形の性質〜作図によって描いた図形の性質

単元:
#数A#図形の性質#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
【第5問】
(1) 円Oに対して、次の手順1で作図を行う。
[手順1]
(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。円Oと直線lとの交点をA, Bとし、線分ABの中点Cをとる。
(Step 2) 円Oの周上に、点Dを$\angle COD$が鈍角となるようにとる。直線CDを引き、円Oとの交点でDとは異なる点をEとする。
(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点をFとし、円Oとの交点でDとは異なる点をGとする。
(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。
このとき、直線lと点Dの位置によらず、直線EHは円Oの接線である。このことは、次の構想に基づいて、後のように説明できる。
[構想]
直線EHが円Oの接線であることを証明するためには、$\angle OEH=\boxed{\ \ アイ\ \ }°$であることを示せばよい。
手順1の(Step 1)と(Step 4)により、4点C, G, H, $\boxed{\boxed{\ \ ウ\ \ }}$は同一円周上にあることがわかる。よって、$\angle CHG=\boxed{\boxed{\ \ エ\ \ }}$である。一方、点Eは円Oの周上にあることから、$\boxed{\boxed{\ \ エ\ \ }}=\boxed{\boxed{\ \ オ\ \ }}$がわかる。よって、$\angle CHG=\boxed{\boxed{\ \ オ\ \ }}$であるので、4点C, G, H, $\boxed{\boxed{\ \ カ\ \ }}$は同一円周上にある。この円が点$\boxed{\boxed{\ \ ウ\ \ }}$を通ることにより、$\angle OEH=\boxed{\ \ アイ\ \ }°$を示すことができる。
$\boxed{\boxed{\ \ ウ\ \ }}$の解答群
⓪B ①D ②F ③O
$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪$\angle AFC$ ①$\angle CDF$ ②$\angle CGH$ ③$\angle CBO$ ④$\angle FOG$
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$\angle AED$ ①$\angle ADE$ ②$\angle BOE$ ③$\angle DEG$ ④$\angle EOH$
$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪A ①D ②E ③F
(2) 円Oに対して、(1)の手順1とは直線lの引き方を変え、次の手順2で作図を行う。
[手順2]
(Step 1) 円Oと共有点をもたない直線lを引く。中心Oから直線lに垂直な直線を引き、直線lとの交点をPとする。
(Step 2) 円Oの周上に、点Qを$\angle POQ$が鈍角となるようにとる。直線PQを引き、円Oとの交点でQとは異なる点をRとする。
(Step 3) 点Qを通り直線OPに垂直な直線を引き、円Oとの交点でQとは異なる点をSとする。
(Step 4) 点Sにおける円Oの接線を引き、直線lとの交点をTとする。
このとき、$\angle PTS=\boxed{\boxed{\ \ キ\ \ }}$である。
円Oの半径が$\sqrt 5$で、OT=$3\sqrt 6$であったとすると、3点O, P, Rを通る円の半径は$\frac{\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コ\ \ }}$であり、RT=$\boxed{\ \ サ\ \ }$である。
$\boxed{\boxed{\ \ キ\ \ }}$の解答群
⓪$\angle PQS$ ①$\angle PST$ ②$\angle QPS$ ③$\angle QRS$ ④$\angle SRT$
2023共通テスト過去問
この動画を見る
【第5問】
(1) 円Oに対して、次の手順1で作図を行う。
[手順1]
(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。円Oと直線lとの交点をA, Bとし、線分ABの中点Cをとる。
(Step 2) 円Oの周上に、点Dを$\angle COD$が鈍角となるようにとる。直線CDを引き、円Oとの交点でDとは異なる点をEとする。
(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点をFとし、円Oとの交点でDとは異なる点をGとする。
(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。
このとき、直線lと点Dの位置によらず、直線EHは円Oの接線である。このことは、次の構想に基づいて、後のように説明できる。
[構想]
直線EHが円Oの接線であることを証明するためには、$\angle OEH=\boxed{\ \ アイ\ \ }°$であることを示せばよい。
手順1の(Step 1)と(Step 4)により、4点C, G, H, $\boxed{\boxed{\ \ ウ\ \ }}$は同一円周上にあることがわかる。よって、$\angle CHG=\boxed{\boxed{\ \ エ\ \ }}$である。一方、点Eは円Oの周上にあることから、$\boxed{\boxed{\ \ エ\ \ }}=\boxed{\boxed{\ \ オ\ \ }}$がわかる。よって、$\angle CHG=\boxed{\boxed{\ \ オ\ \ }}$であるので、4点C, G, H, $\boxed{\boxed{\ \ カ\ \ }}$は同一円周上にある。この円が点$\boxed{\boxed{\ \ ウ\ \ }}$を通ることにより、$\angle OEH=\boxed{\ \ アイ\ \ }°$を示すことができる。
$\boxed{\boxed{\ \ ウ\ \ }}$の解答群
⓪B ①D ②F ③O
$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪$\angle AFC$ ①$\angle CDF$ ②$\angle CGH$ ③$\angle CBO$ ④$\angle FOG$
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$\angle AED$ ①$\angle ADE$ ②$\angle BOE$ ③$\angle DEG$ ④$\angle EOH$
$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪A ①D ②E ③F
(2) 円Oに対して、(1)の手順1とは直線lの引き方を変え、次の手順2で作図を行う。
[手順2]
(Step 1) 円Oと共有点をもたない直線lを引く。中心Oから直線lに垂直な直線を引き、直線lとの交点をPとする。
(Step 2) 円Oの周上に、点Qを$\angle POQ$が鈍角となるようにとる。直線PQを引き、円Oとの交点でQとは異なる点をRとする。
(Step 3) 点Qを通り直線OPに垂直な直線を引き、円Oとの交点でQとは異なる点をSとする。
(Step 4) 点Sにおける円Oの接線を引き、直線lとの交点をTとする。
このとき、$\angle PTS=\boxed{\boxed{\ \ キ\ \ }}$である。
円Oの半径が$\sqrt 5$で、OT=$3\sqrt 6$であったとすると、3点O, P, Rを通る円の半径は$\frac{\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コ\ \ }}$であり、RT=$\boxed{\ \ サ\ \ }$である。
$\boxed{\boxed{\ \ キ\ \ }}$の解答群
⓪$\angle PQS$ ①$\angle PST$ ②$\angle QPS$ ③$\angle QRS$ ④$\angle SRT$
2023共通テスト過去問
2023高校入試解説12問目 台形と半円 解き方2通り 日大習志野(改)

単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$AD=\frac{9}{4}$
半円Oの面積=?
*図は動画内参照
2023日本大学習志野高等学校
この動画を見る
$AD=\frac{9}{4}$
半円Oの面積=?
*図は動画内参照
2023日本大学習志野高等学校
角の二等分線➕平行線=❓

福田の1.5倍速演習〜合格する重要問題059〜慶應義塾大学2019年度薬学部第1問(7)〜球に内接する四角錐の体積の最大値

単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (7)正四角錐ABCDEの全ての頂点は半径3の球面上にある。
この正四角錐の体積Vの最大値は$\boxed{\ \ ソ\ \ }$である。
2019慶應義塾大学薬学部過去問
この動画を見る
$\Large{\boxed{1}}$ (7)正四角錐ABCDEの全ての頂点は半径3の球面上にある。
この正四角錐の体積Vの最大値は$\boxed{\ \ ソ\ \ }$である。
2019慶應義塾大学薬学部過去問
2023高校入試解説8問目 内接円 西大和学園 内接円

単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABC∽△PRQ
△PRQ=?
*図は動画内参照
2023西大和学園高等学校
この動画を見る
△ABC∽△PRQ
△PRQ=?
*図は動画内参照
2023西大和学園高等学校
福田の1.5倍速演習〜合格する重要問題058〜慶應義塾大学2019年度環境情報学部第5問〜正方形の中の内接外接する円の半径

単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ 図のように(※動画参照)、1つの正方形の中に、半径の異なる3種類の円が合計10個配置されている。
円$A_1$と$A_2$は半径が同じRで、それぞれ図のように正方形の2辺に内接している。
円$B_1,B_2,B_3,B_4,B_5,B_6$は半径が同じrで、円$B_1$と$B_2$は接し、
図のように両方とも円$A_1$に内接し円$A_2$に外接している。円$B_3$と$B_4$は接し、図のように両方とも円$A_1$と円$A_2$に内接している。円$B_5$と$B_6$は接し、
図のように両方とも円$A_1$に外接し円$A_2$に内接している。
円$C_1$と$C_2$は半径が同じ$r'$で、それぞれ図のように正方形の2辺に内接し、円$A_1$と$A_2$に外接している。なお、円$B_1,B_2,B_5,B_6$は正方形の辺に接していない。
このとき、正方形の1辺の長さをsとすると
$\left\{\begin{array}{1}
R=\displaystyle\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}r \\
s=\left(\boxed{\ \ オカ\ \ }\sqrt{R}+\boxed{\ \ キク\ \ }\sqrt{r'}\right)^{\boxed{ケコ}}\\
r'=\frac{\boxed{\ \ サシ\ \ }+\displaystyle\sqrt{10}+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }+\displaystyle5\sqrt{10}}}{\boxed{\ \ チツ\ \ }}r\\
\end{array}\right.$
である。
2019慶應義塾大学環境情報学部過去問
この動画を見る
$\Large{\boxed{5}}$ 図のように(※動画参照)、1つの正方形の中に、半径の異なる3種類の円が合計10個配置されている。
円$A_1$と$A_2$は半径が同じRで、それぞれ図のように正方形の2辺に内接している。
円$B_1,B_2,B_3,B_4,B_5,B_6$は半径が同じrで、円$B_1$と$B_2$は接し、
図のように両方とも円$A_1$に内接し円$A_2$に外接している。円$B_3$と$B_4$は接し、図のように両方とも円$A_1$と円$A_2$に内接している。円$B_5$と$B_6$は接し、
図のように両方とも円$A_1$に外接し円$A_2$に内接している。
円$C_1$と$C_2$は半径が同じ$r'$で、それぞれ図のように正方形の2辺に内接し、円$A_1$と$A_2$に外接している。なお、円$B_1,B_2,B_5,B_6$は正方形の辺に接していない。
このとき、正方形の1辺の長さをsとすると
$\left\{\begin{array}{1}
R=\displaystyle\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}r \\
s=\left(\boxed{\ \ オカ\ \ }\sqrt{R}+\boxed{\ \ キク\ \ }\sqrt{r'}\right)^{\boxed{ケコ}}\\
r'=\frac{\boxed{\ \ サシ\ \ }+\displaystyle\sqrt{10}+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }+\displaystyle5\sqrt{10}}}{\boxed{\ \ チツ\ \ }}r\\
\end{array}\right.$
である。
2019慶應義塾大学環境情報学部過去問
2023高校入試解説6問目 座標平面上の正三角形 西大和学園

単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
(1)Cの座標は?
(2)Aの座標は?
(Aのx座標<0)
*図は動画内参照
2023西大和学園高等学校
この動画を見る
(1)Cの座標は?
(2)Aの座標は?
(Aのx座標<0)
*図は動画内参照
2023西大和学園高等学校
面積二等分する直線を選べ!!大阪府

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
長方形ABCDを面積の等しい2つの図形に分けるものを全て選べ。
(ア)直線AC
(イ)$\angle ABC$の二等分線
(ウ)辺BCの垂直二等分線
(エ)辺DAの中点とCを通る直線
*図は動画内参照
大阪府
この動画を見る
長方形ABCDを面積の等しい2つの図形に分けるものを全て選べ。
(ア)直線AC
(イ)$\angle ABC$の二等分線
(ウ)辺BCの垂直二等分線
(エ)辺DAの中点とCを通る直線
*図は動画内参照
大阪府
球が出てきただけでビビるなよ。海城高校

単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径$\sqrt 6$の球に内接する立方体の体積=?
*図は動画内参照
海城高等学校
この動画を見る
半径$\sqrt 6$の球に内接する立方体の体積=?
*図は動画内参照
海城高等学校
斜線部分の面積を求めよ 洛南高校

単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積を求めよ。
洛南高等学校
この動画を見る
斜線部の面積を求めよ。
洛南高等学校
気付けば、そして知っていれば一瞬!!円

福田の1.5倍速演習〜合格する重要問題041〜上智大学2019年度TEAP文系第3問〜長方形の紙を折り返す問題

単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$AB=2,BC=3$の長方形ABCDの形の紙がある。DE=aとなる辺DC上の
点Eを考える。AがEと重なるように紙を折るとき、折り目となる線と辺AD,
辺BCとの交点をそれぞれP,Qとする。
(1)aを用いて表すと、$AP=\frac{\boxed{二}}{\boxed{ヌ}}a^2+\frac{\boxed{ネ}}{\boxed{ノ}}$である.
(2)aを用いて表すと、$BQ=\frac{\boxed{ハ}}{\boxed{ヒ}}a^2+
\frac{\boxed{フ}}{\boxed{ヘ}}a+\frac{\boxed{ホ}}{\boxed{マ}}$である。
(3)aを用いて表すと、$PQ=\frac{\boxed{ミ}}{\boxed{ム}}\sqrt{a^2+\boxed{メ}}$である。
(4)四角形ABQPの面積はaを用いて表すと、$\frac{\boxed{モ}}{\boxed{ヤ}}a^2+\frac{\boxed{ユ}}{\boxed{ヨ}}a+\boxed{ラ}$
であり、その最小値は$\frac{\boxed{リ}}{\boxed{ル}}$である。
2019上智大過去問
この動画を見る
$AB=2,BC=3$の長方形ABCDの形の紙がある。DE=aとなる辺DC上の
点Eを考える。AがEと重なるように紙を折るとき、折り目となる線と辺AD,
辺BCとの交点をそれぞれP,Qとする。
(1)aを用いて表すと、$AP=\frac{\boxed{二}}{\boxed{ヌ}}a^2+\frac{\boxed{ネ}}{\boxed{ノ}}$である.
(2)aを用いて表すと、$BQ=\frac{\boxed{ハ}}{\boxed{ヒ}}a^2+
\frac{\boxed{フ}}{\boxed{ヘ}}a+\frac{\boxed{ホ}}{\boxed{マ}}$である。
(3)aを用いて表すと、$PQ=\frac{\boxed{ミ}}{\boxed{ム}}\sqrt{a^2+\boxed{メ}}$である。
(4)四角形ABQPの面積はaを用いて表すと、$\frac{\boxed{モ}}{\boxed{ヤ}}a^2+\frac{\boxed{ユ}}{\boxed{ヨ}}a+\boxed{ラ}$
であり、その最小値は$\frac{\boxed{リ}}{\boxed{ル}}$である。
2019上智大過去問
面積比やら三平方の定理やら。。良問!!慶應志木

単元:
#数学(中学生)#中3数学#数A#図形の性質#三平方の定理#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
面積4等分
$△ABC=4 \sqrt 3 +4$
x=?
*図は動画内参照
慶應義塾志木高等学校(改)
この動画を見る
面積4等分
$△ABC=4 \sqrt 3 +4$
x=?
*図は動画内参照
慶應義塾志木高等学校(改)
面積から辺への引越し 慶應志木

単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xをy,zで表せ
*図は動画内参照
慶應義塾志木高等学校
この動画を見る
xをy,zで表せ
*図は動画内参照
慶應義塾志木高等学校
福田の1.5倍速演習〜合格する重要問題030〜東京大学2016年度文系第1問〜鋭角三角形となる条件

単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
座標平面上の3点$P(x,y), Q(-x,-y), R(1,0)$が鋭角三角形をなすための$(x,y)$
についての条件を求めよ。また、その条件を満たす点P(x,y)の範囲を図示せよ。
2016東京大学文系過去問
この動画を見る
座標平面上の3点$P(x,y), Q(-x,-y), R(1,0)$が鋭角三角形をなすための$(x,y)$
についての条件を求めよ。また、その条件を満たす点P(x,y)の範囲を図示せよ。
2016東京大学文系過去問
気付けば一瞬!!円と正方形

【保存版】こんな簡単にでるん?
正方形の中にある直角三角形の面積

円と長方形
