約数・倍数・整数の割り算と余り・合同式
【数学A】7の倍数の見分け方を伝授します【3桁ずつ分割!map mapで計算せよ!】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学A】7の倍数の見分け方説明動画です
この動画を見る
【数学A】7の倍数の見分け方説明動画です
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$9x^2-4y^2-4y=721$
自然数$(x,y)$をすべて求めよ
この動画を見る
$9x^2-4y^2-4y=721$
自然数$(x,y)$をすべて求めよ
北海道大 整数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^2+n+14$が平方数となるような$n$(自然数)をすべて求めよ
出典:北海道大学 過去問
この動画を見る
$n^2+n+14$が平方数となるような$n$(自然数)をすべて求めよ
出典:北海道大学 過去問
東工大 整数問題 合同式
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=19^n+(-1)^{n-1}2^{4n-3}$のすべてを割り切る素数を求めよ。
$(n$自然数$)$
出典:1986年東京工業大学 過去問
この動画を見る
$a_n=19^n+(-1)^{n-1}2^{4n-3}$のすべてを割り切る素数を求めよ。
$(n$自然数$)$
出典:1986年東京工業大学 過去問
東京都立大
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京都立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z^4-2(\cos\displaystyle \frac{3}{7}\pi)z^3+2z^2-2(\cos\displaystyle \frac{3}{7}\pi)z+1=0$
(1)
$z+\displaystyle \frac{1}{z}$の値を求めよ
(2)
$z^n+\displaystyle \frac{1}{z^n}$の実部の最大値とそれを与える自然数$n$を求めよ
出典:東京都立大学 過去問
この動画を見る
$z^4-2(\cos\displaystyle \frac{3}{7}\pi)z^3+2z^2-2(\cos\displaystyle \frac{3}{7}\pi)z+1=0$
(1)
$z+\displaystyle \frac{1}{z}$の値を求めよ
(2)
$z^n+\displaystyle \frac{1}{z^n}$の実部の最大値とそれを与える自然数$n$を求めよ
出典:東京都立大学 過去問
マイクロソフトの数学部で講師をしてきた。合同式で暗号
弘前大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
和が$406$で最小公倍数が$2660$である2つの自然数を求めよ
出典:2010年弘前大学 過去問
この動画を見る
和が$406$で最小公倍数が$2660$である2つの自然数を求めよ
出典:2010年弘前大学 過去問
数学オリンピック予選
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。
出典:2001年数学オリンピック 予選問題
この動画を見る
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。
出典:2001年数学オリンピック 予選問題
数列・合同式 前橋工科大
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1$ $a_n=3a_{n-1}+3^n$
(1)
$a_n$
(2)
$\displaystyle \sum_{k=1}^n a_k$
(3)
$a_n+n-2$は4つの倍数を示せ
出典:2000年前橋工科大学 過去問
この動画を見る
$a_1=1$ $a_n=3a_{n-1}+3^n$
(1)
$a_n$
(2)
$\displaystyle \sum_{k=1}^n a_k$
(3)
$a_n+n-2$は4つの倍数を示せ
出典:2000年前橋工科大学 過去問
2020年問題 合同式の基本
もっちゃんと学ぶ「合同式」
【数A】一次不定方程式を合同式(mod)で解くステップ【解法の解説】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数A】一次不定方程式を合同式(mod)で解くステップ紹介動画です
-----------------
$42x+29y=2$の整数解をすべて求めよ
$37x+97y=7$の整数解をすべて求めよ
この動画を見る
【数A】一次不定方程式を合同式(mod)で解くステップ紹介動画です
-----------------
$42x+29y=2$の整数解をすべて求めよ
$37x+97y=7$の整数解をすべて求めよ
京都大(改)良問再投稿 3で割った余りを秒で出す
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x^{2020}+1)^{2020}+(x^2+1)^{2020}+1$を$x^2+x+1$で割った余りを求めよ
出典:京都大学 過去問
この動画を見る
$(x^{2020}+1)^{2020}+(x^2+1)^{2020}+1$を$x^2+x+1$で割った余りを求めよ
出典:京都大学 過去問
整数問題(自作)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,n$は自然数
$9x^2-y^2=18^n$を満たす$(x,y)$の組数を$n$で表せ
この動画を見る
$x,y,n$は自然数
$9x^2-y^2=18^n$を満たす$(x,y)$の組数を$n$で表せ
千葉大 素数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は2以上の自然数
(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ
(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ
出典:2007年千葉大学 過去問
この動画を見る
$a,b$は2以上の自然数
(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ
(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ
出典:2007年千葉大学 過去問
早稲田大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^2+1,2n^3+3,6n^2+5$
全てが素数となる自然数$n$をすべて求めよ
出典:早稲田大学 過去問
この動画を見る
$n^2+1,2n^3+3,6n^2+5$
全てが素数となる自然数$n$をすべて求めよ
出典:早稲田大学 過去問
Math Video: How To Solve Congruent Expressions Most Easily
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学 合同式を英語で解説
この動画を見る
数学 合同式を英語で解説
【数学A】合同式(mod)の総まとめ【誰でも17分でマスター】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学A】合同式(mod)の総まとめ動画です
-----------------
$x+5 \equiv (mod7)$を$x \equiv a(mod m)$の形で示せ。
$5x \equiv 3(mod4)$を$x \equiv a(mod m)(a \lt m)$の形で示せ。
この動画を見る
【数学A】合同式(mod)の総まとめ動画です
-----------------
$x+5 \equiv (mod7)$を$x \equiv a(mod m)$の形で示せ。
$5x \equiv 3(mod4)$を$x \equiv a(mod m)(a \lt m)$の形で示せ。
徳島大(医)整数問題 約数の個数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
$n^2(n^2+8)$の正の約数が10個
$n$をすべて求めよ。
出典:2019年徳島大学医学部 過去問
この動画を見る
$n$自然数
$n^2(n^2+8)$の正の約数が10個
$n$をすべて求めよ。
出典:2019年徳島大学医学部 過去問
整数の性質が苦手な人のための動画【互いに素・a=ga'・ab=gl】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
整数の性質まとめ動画です
-----------------
1⃣
和が168で最大公約数が14、となる自然数のa、bの組をすべて求めよ。
2⃣
積が300で最小公倍数が60となる自然数の、bの組をすべて求めよ。
3⃣
積が288で最下公約数が6となる自然教a、bの組をすべて求めよ。なお、$a \lt b$とする。
この動画を見る
整数の性質まとめ動画です
-----------------
1⃣
和が168で最大公約数が14、となる自然数のa、bの組をすべて求めよ。
2⃣
積が300で最小公倍数が60となる自然数の、bの組をすべて求めよ。
3⃣
積が288で最下公約数が6となる自然教a、bの組をすべて求めよ。なお、$a \lt b$とする。
帝京大(医)漸化式 合同式
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=(1+\sqrt{ 2 })^n+(1-\sqrt{ 2 })^n$
$a_n$は整数であることを示せ
$a_{100}$を3で割った余り
出典:2005年帝京大学医学部 過去問
この動画を見る
$a_n=(1+\sqrt{ 2 })^n+(1-\sqrt{ 2 })^n$
$a_n$は整数であることを示せ
$a_{100}$を3で割った余り
出典:2005年帝京大学医学部 過去問
整数問題 チャレンジ
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$(m,n)$をすべて求めよ。
$3^n-2^{n+1}=m^2$
この動画を見る
自然数$(m,n)$をすべて求めよ。
$3^n-2^{n+1}=m^2$
息抜き 整数問題
息抜き整数問題(でもそんなに簡単じゃないよ)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
この動画を見る
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
息抜き 約数の個数 合同式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$の約数の個数を$N$
$N$を2019で割った余りを求めよ
この動画を見る
$2020^{2020}$の約数の個数を$N$
$N$を2019で割った余りを求めよ
息抜き 整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$を$2019^2$で割った余りを求めよ
この動画を見る
$2020^{2020}$を$2019^2$で割った余りを求めよ
滋賀医科大 複雑な問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n!=2^{an}m(n \geqq 2,m$奇数$)$
(1)
$\displaystyle \frac{(2n)!}{2^nn!}$は奇数 示せ
(2)
$a_{2n}-a_n$を$n$で表せ
(3)
$n=2^k$のときの$a_n$
$n$を用いて表せ
(4)
$a_n \lt n$を表せ
(5)
$\sqrt[ n ]{ n! }$は無理数 示せ
出典:滋賀医科大学 過去問
この動画を見る
$n!=2^{an}m(n \geqq 2,m$奇数$)$
(1)
$\displaystyle \frac{(2n)!}{2^nn!}$は奇数 示せ
(2)
$a_{2n}-a_n$を$n$で表せ
(3)
$n=2^k$のときの$a_n$
$n$を用いて表せ
(4)
$a_n \lt n$を表せ
(5)
$\sqrt[ n ]{ n! }$は無理数 示せ
出典:滋賀医科大学 過去問
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3^a+3^b=n^2$を満たす自然数の組$(a,b,c)$は無限にあることを示せ
この動画を見る
$3^a+3^b=n^2$を満たす自然数の組$(a,b,c)$は無限にあることを示せ
数学オリンピック予選 整数問題
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$自然数 $a \lt b$
$a$と$b$は互いに素
$a \times b=29!$を満たす$(a,b)$の組はいくつか求めよ
出典:数学オリンピック 予選問題
この動画を見る
$a,b$自然数 $a \lt b$
$a$と$b$は互いに素
$a \times b=29!$を満たす$(a,b)$の組はいくつか求めよ
出典:数学オリンピック 予選問題
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3^a+4^b=5^c(a,b,c \epsilon \mathbb{ N })$
$(a,b,c)$をすべて求めよ
この動画を見る
$3^a+4^b=5^c(a,b,c \epsilon \mathbb{ N })$
$(a,b,c)$をすべて求めよ