整数の性質

ルートを含む方程式

単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$\sqrt{2x-1} - \sqrt {x-1} = \sqrt {6-x}$
岡山県立大学
この動画を見る
方程式を解け
$\sqrt{2x-1} - \sqrt {x-1} = \sqrt {6-x}$
岡山県立大学
3つの素数の平方の和が素数

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
p,q,rは相異なる素数$p^2+q^2+r^2$が素数となるための必要条件を2つ以上挙げてください.
この動画を見る
p,q,rは相異なる素数$p^2+q^2+r^2$が素数となるための必要条件を2つ以上挙げてください.
大学入試問題#316 群馬大学(2010) #整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師:
ますただ
問題文全文(内容文):
$2 \leqq p \lt q \lt r$
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{r} \geqq 1$をみたす整数の組$(p.g.r)$をすべて求めよ
出典:2010年群馬大学 入試問題
この動画を見る
$2 \leqq p \lt q \lt r$
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{r} \geqq 1$をみたす整数の組$(p.g.r)$をすべて求めよ
出典:2010年群馬大学 入試問題
階乗の方程式

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{(x^2-1)!}{x^2-1} = 23!$のとき
x=?
この動画を見る
$\frac{(x^2-1)!}{x^2-1} = 23!$のとき
x=?
中学生向け整数問題その3

単元:
#中2数学#式の計算(単項式・多項式・式の四則計算)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.
この動画を見る
自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.
福田の数学〜立教大学2022年経済学部第1問(3)〜整式の割り算と余り

単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。
2022立教大学経済学部過去問
この動画を見る
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。
2022立教大学経済学部過去問
中学生向け整数問題その2

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$6mn=9m-10n+303$を満たす(m,n)をすべて求めよ.
この動画を見る
m,nを自然数とする.
$6mn=9m-10n+303$を満たす(m,n)をすべて求めよ.
【3分で解決!一度は解きたい典型問題!】整数:大阪府公立高等学校~全国入試問題解法

単元:
#数学(中学生)#整数の性質#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連続する3つの整数の和が2022となるとき
この連続する3つの整数のうち最も小さい整数を求めなさい.
大阪府高校過去問
この動画を見る
連続する3つの整数の和が2022となるとき
この連続する3つの整数のうち最も小さい整数を求めなさい.
大阪府高校過去問
福田の数学〜立教大学2022年理学部第1問(5)〜最大公約数と最小公倍数

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\ a \lt b$ を満たす自然数の組a$,\ b$の和が119、最小公倍数が462であるとき、
$a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }$である。
2022立教大学理学部過去問
この動画を見る
$\ a \lt b$ を満たす自然数の組a$,\ b$の和が119、最小公倍数が462であるとき、
$a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }$である。
2022立教大学理学部過去問
【高校数学あるある】階乗の末尾に0はいくつ並ぶ? #Shorts

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
150!の末尾が0の個数を求めよ。
この動画を見る
150!の末尾が0の個数を求めよ。
素数が絡んだ整数問題(再アップ)【青山学院大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
素数$p,q$および自然数$n$に対し,$\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{pq}=\dfrac{1}{n}$が成り立つような$(p,q,n)$の組をすべて求めよ。
青山学院大過去問
この動画を見る
素数$p,q$および自然数$n$に対し,$\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{pq}=\dfrac{1}{n}$が成り立つような$(p,q,n)$の組をすべて求めよ。
青山学院大過去問
ただの分数式だけど

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
a,bは正の整数である.
$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2018}$を満たす(a,b)を全て求めよ.ただし1009は素数とする.
この動画を見る
a,bは正の整数である.
$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2018}$を満たす(a,b)を全て求めよ.ただし1009は素数とする.
数のいれかえ 東海高校(改)

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
ある2つの位の数をいれかえるともとの整数より90大きくなる。
このような3ケタの自然数は何個ある?
東海高等学校(改)
この動画を見る
ある2つの位の数をいれかえるともとの整数より90大きくなる。
このような3ケタの自然数は何個ある?
東海高等学校(改)
英国数学オリンピック 高校入試レベルの問題

単元:
#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$
英国数学オリンピック過去問
この動画を見る
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$
英国数学オリンピック過去問
【整数問題】超典型的な問題!解けますか?【数学 入試問題】

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{6}$かつ$m<n$を満たす正の整数$m,n$の組($m,n$)をすべて求めよ。
この動画を見る
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{6}$かつ$m<n$を満たす正の整数$m,n$の組($m,n$)をすべて求めよ。
イラン数学オリンピック 整数問題

単元:
#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
Pが5以上の素数ならば,$7^P-6^P-1$は43の倍数であることを示せ.
イラン数学オリンピック過去問
この動画を見る
Pが5以上の素数ならば,$7^P-6^P-1$は43の倍数であることを示せ.
イラン数学オリンピック過去問
指数が絡んだ整数問題

単元:
#数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2^m - 2^n = 2016$
$m=?$ $n=?$
(mとnは自然数)
この動画を見る
$2^m - 2^n = 2016$
$m=?$ $n=?$
(mとnは自然数)
【高校数学】「これ」知ってる? フェルマーが愛した無限降下法という証明方法 #Shorts

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\sqrt3 $が無理数であることを証明せよ。
この動画を見る
$\sqrt3 $が無理数であることを証明せよ。
素数であることの証明【京都大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の整数とする。$3^n-2^n$が素数ならば$n$も素数であることを示せ。
京都大過去問
この動画を見る
$n$を2以上の整数とする。$3^n-2^n$が素数ならば$n$も素数であることを示せ。
京都大過去問
【良問】素数を扱え!考え方をきっちり理解したい整数問題です【京都大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$p$が素数ならば,$p^4+14$は素数でないことを示せ。
京都大過去問
この動画を見る
$p$が素数ならば,$p^4+14$は素数でないことを示せ。
京都大過去問
インド数学オリンピック

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
a,b,cは正の実数である.
$\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=1$を満たす
$abc \leqq \dfrac{1}{8}$を示せ.
インド数学オリンピック過去問
この動画を見る
a,b,cは正の実数である.
$\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=1$を満たす
$abc \leqq \dfrac{1}{8}$を示せ.
インド数学オリンピック過去問
素数を合成数の和で表す

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
13以上の素数はすべて2つの合成数の和で表せることを示せ.
この動画を見る
13以上の素数はすべて2つの合成数の和で表せることを示せ.
整数問題 昭和学院秀英

単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$xy=(x+2)^2$をみたす自然数の組(x,y)をすべて求めよ。
昭和学院秀英高等学校
この動画を見る
$xy=(x+2)^2$をみたす自然数の組(x,y)をすべて求めよ。
昭和学院秀英高等学校
整数問題!地味に難しいです【大阪医科薬科大学】【数学 入試問題】

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$x,y$に対する方程式$3^x-2^y=1$を考える。
(1)y≧2に対し解$x$が存在するならば,$x$は偶数であることを示せ。
(2)上の方程式を満たす自然数$x,y$の組をすべて求めよ。
大阪医科歯科大過去問
この動画を見る
自然数$x,y$に対する方程式$3^x-2^y=1$を考える。
(1)y≧2に対し解$x$が存在するならば,$x$は偶数であることを示せ。
(2)上の方程式を満たす自然数$x,y$の組をすべて求めよ。
大阪医科歯科大過去問
【高校数学あるある】よく見る問題!下4桁を求めよ! #Shorts

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$99^{99}$の下4桁を求めよ。
この動画を見る
$99^{99}$の下4桁を求めよ。
【高校数学】n進法のかけ算割り算をどこよりも丁寧に 5-13【数学A】

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
かけ算
(1)$1011_{(2)}\times1101_{(2)}$ (2)$203_{(4)}\times12_{(4)}$
割り算
(1)$101001101_{(2)}\div1001_{(2)}$ (2)$1542_{(7)}\div36_{(7)}$
この動画を見る
かけ算
(1)$1011_{(2)}\times1101_{(2)}$ (2)$203_{(4)}\times12_{(4)}$
割り算
(1)$101001101_{(2)}\div1001_{(2)}$ (2)$1542_{(7)}\div36_{(7)}$
福田の数学〜早稲田大学2022年社会科学部第3問〜整式の割り算の余りの問題

単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
整式$P(x)$を$x-1$で割ると1余り、$(x+1)^2$で割ると$3x+2$余る。
このとき、次の問いに答えよ。
(1)$P(x)$を$x+1$で割った時の余りを求めよ。
(2)$P(x)$を$(x-1)(x+1)$で割った時の余りを求めよ。
(3)$P(x)$を$(x-1)(x+1)^2$で割った時の余りを求めよ。
2022早稲田大学社会科学部過去問
この動画を見る
整式$P(x)$を$x-1$で割ると1余り、$(x+1)^2$で割ると$3x+2$余る。
このとき、次の問いに答えよ。
(1)$P(x)$を$x+1$で割った時の余りを求めよ。
(2)$P(x)$を$(x-1)(x+1)$で割った時の余りを求めよ。
(3)$P(x)$を$(x-1)(x+1)^2$で割った時の余りを求めよ。
2022早稲田大学社会科学部過去問
階乗の虫食い算

整数問題 基本

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2P^4-P^2+16$が平方数となるような素数$P$をすべて求めよ.
この動画を見る
$2P^4-P^2+16$が平方数となるような素数$P$をすべて求めよ.
特殊な方程式
