整数の性質
普通の中学生が解くには難しい 興南高校
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
5つの数字0,1,2,6,7から異なる3つの数字を選び、並べて3ケタの数を作とき
5で割ると2余る数は何個できるか?
興南高等学校
この動画を見る
5つの数字0,1,2,6,7から異なる3つの数字を選び、並べて3ケタの数を作とき
5で割ると2余る数は何個できるか?
興南高等学校
整数問題 海星高校(長崎)
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{80}{30 - 2m}$が自然数になる整数mの個数を求めよ。
海星高校
この動画を見る
$\frac{80}{30 - 2m}$が自然数になる整数mの個数を求めよ。
海星高校
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ n^2+3,n^2+7,n^2+13,n^2+19$のすべてが素数となる整数nをすべて求めよ.
この動画を見る
$ n^2+3,n^2+7,n^2+13,n^2+19$のすべてが素数となる整数nをすべて求めよ.
【高校数学】n進法の足し算引き算をどこよりも丁寧に 5-12【数学A】
ただの分数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{3}{m}+\dfrac{4}{n}=\dfrac{1}{12}$,自然数(m,n)をすべて求めよ.
ただし,$\dfrac{3}{m},\dfrac{4}{m}$は既約分数である.
この動画を見る
$ \dfrac{3}{m}+\dfrac{4}{n}=\dfrac{1}{12}$,自然数(m,n)をすべて求めよ.
ただし,$\dfrac{3}{m},\dfrac{4}{m}$は既約分数である.
素数になる2次式
単元:
#数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
この動画を見る
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
整数問題が苦手な人必見!大事な考えが詰まった良問!【お茶の水女子大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$k^2+2$が素数となるような素数$k$をすべて見つけよ。また,それ以外にないことを示せ。
(2)整数$l$が5で割り切れないとき,$l^4-1$が5で割り切れることを示せ。
お茶の水女子大過去問
この動画を見る
(1)$k^2+2$が素数となるような素数$k$をすべて見つけよ。また,それ以外にないことを示せ。
(2)整数$l$が5で割り切れないとき,$l^4-1$が5で割り切れることを示せ。
お茶の水女子大過去問
素数製造マシーン 素数とならないものを答えよ 洛星(改)
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$p=n^2+n+41$
100以下の自然数nのうちpが素数とならないものを2つ答えよ
洛星高等学校(改)
この動画を見る
$p=n^2+n+41$
100以下の自然数nのうちpが素数とならないものを2つ答えよ
洛星高等学校(改)
1+1=10が成り立つ世界...
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1+1=10
成り立つ世界の解説動画です
この動画を見る
1+1=10
成り立つ世界の解説動画です
【数A】なんと1分で求められる!?一橋2020大問1(1)10の10乗を2020で割ったあまりを求める
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
10の10乗を2020で割ったあまりを求めよ
この動画を見る
10の10乗を2020で割ったあまりを求めよ
ガウス記号の二次方程式
素数にならないのはなぜ? 洛星
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$N=n^2+n+40$のnにどのような自然数を代入してもNは素数にはならない。
なぜ?
洛星高等学校(改)
この動画を見る
$N=n^2+n+40$のnにどのような自然数を代入してもNは素数にはならない。
なぜ?
洛星高等学校(改)
階乗に関する問題!! 24で割った余り
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
1!+2!+3!+・・・+2022!
24で割った余りは?
この動画を見る
1!+2!+3!+・・・+2022!
24で割った余りは?
整数問題 3乗になる数!! 新潟明訓
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
1872 - 36nがある正の整数の3乗で表されるような正の整数nをすべて求めよ
新潟明訓高等学校
この動画を見る
1872 - 36nがある正の整数の3乗で表されるような正の整数nをすべて求めよ
新潟明訓高等学校
整数問題!無限降下法を用いた証明!【数学 入試問題】【千葉大学】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$が3以上の整数のとき,$x^n+2y^n=4z^n$を満たす自然数$x,y,z$は存在しないことを証明せよ。
千葉大過去問
この動画を見る
$n$が3以上の整数のとき,$x^n+2y^n=4z^n$を満たす自然数$x,y,z$は存在しないことを証明せよ。
千葉大過去問
【数A】modの計算法則を分かりやすく説明します
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
modの計算法則をわかりやすく説明します。(証明付き!)
この動画を見る
modの計算法則をわかりやすく説明します。(証明付き!)
面白不等式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
m,nは自然数である.
$\dfrac{57}{158}\lt \dfrac{m}{n}\lt \dfrac{25}{68}$
mの最小値を求めよ.
この動画を見る
m,nは自然数である.
$\dfrac{57}{158}\lt \dfrac{m}{n}\lt \dfrac{25}{68}$
mの最小値を求めよ.
【高校数学】n進法の小数表現~どこよりも丁寧に~ 5-11【数学A】
福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和
単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{2}}\ p,q$を相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。
・係数はすべて整数1で$x^2$の係数は1である。
・$f(1)=pq$である。
・方程式$f(x)=0$は整数解をもつ。
以下の問いに答えよ。
(1)$f(x)$をすべて求めよ。
(2)(1)で求めたものを$f_1(x),f_2(x),\ldots,f_m(x)$とする。2m次方程式
$f_1(x)×f_2(x)×\ldots×f_m(x)=0$
の相異なる解の総和は$p,q$によらないことを示せ。
2022早稲田大学理工学部過去問
この動画を見る
${\large\boxed{2}}\ p,q$を相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。
・係数はすべて整数1で$x^2$の係数は1である。
・$f(1)=pq$である。
・方程式$f(x)=0$は整数解をもつ。
以下の問いに答えよ。
(1)$f(x)$をすべて求めよ。
(2)(1)で求めたものを$f_1(x),f_2(x),\ldots,f_m(x)$とする。2m次方程式
$f_1(x)×f_2(x)×\ldots×f_m(x)=0$
の相異なる解の総和は$p,q$によらないことを示せ。
2022早稲田大学理工学部過去問
合同式と組み合わせの公式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
${}_{30} \mathrm{ C }_{15}$を31で割った余りを求めよ.
この動画を見る
${}_{30} \mathrm{ C }_{15}$を31で割った余りを求めよ.
東大の整数問題!かなり良問です【数学 入試問題】【東京大学】
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を1以上の整数とする。
(1)$n^2+1$と$5n^2+9$の最大公約数$d_n$を求めよ。
(2)$(n^2+1)(5n^2+9)$は整数の2乗にならないことを示せ。
東大過去問
この動画を見る
$n$を1以上の整数とする。
(1)$n^2+1$と$5n^2+9$の最大公約数$d_n$を求めよ。
(2)$(n^2+1)(5n^2+9)$は整数の2乗にならないことを示せ。
東大過去問
【高校数学】n進法をどこよりも丁寧に~2進法2進数~ 5-10【数学A】
平方して下3桁が同じ数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
次のような自然数をすべて求めよ.
①2桁の自然数を2乗したら下2桁が同じ数を求めよ.
②3桁の自然数を2乗したら下3桁が同じ数を求めよ.
この動画を見る
次のような自然数をすべて求めよ.
①2桁の自然数を2乗したら下2桁が同じ数を求めよ.
②3桁の自然数を2乗したら下3桁が同じ数を求めよ.
福田の数学〜慶應義塾大学2022年看護医療学部第2問(3)〜平方数を3で割った余りに関する論証
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(3)次の2つの命題を証明せよ。
$(\textrm{i})$整数nが3の倍数でないならば、$n^2$を3で割った時の余りは1である。
$(\textrm{ii})$3つの整数$x,y,z$が等式$x^2+y^2=z^2$を満たすならば、
xとyの少なくとも一方は3の倍数である。
2022慶應義塾大学看護医療学科過去問
この動画を見る
${\large\boxed{2}}$(3)次の2つの命題を証明せよ。
$(\textrm{i})$整数nが3の倍数でないならば、$n^2$を3で割った時の余りは1である。
$(\textrm{ii})$3つの整数$x,y,z$が等式$x^2+y^2=z^2$を満たすならば、
xとyの少なくとも一方は3の倍数である。
2022慶應義塾大学看護医療学科過去問
平方数にならない式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$n(n+1)(n+2)(n+3)$は平方数でないことを示せ.
この動画を見る
nを自然数とする.
$n(n+1)(n+2)(n+3)$は平方数でないことを示せ.
無限降下法って知ってる?整数問題の難問です【数学 入試問題】【九州大学】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a^2+b^2=3c^2$を満たす自然数$a,b,c$は存在しないことを証明せよ。
九州大過去問
この動画を見る
$a^2+b^2=3c^2$を満たす自然数$a,b,c$は存在しないことを証明せよ。
九州大過去問
整数問題 基本問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
nを整数とする.
$n^8-6n^6+9n^4-4n^2$は720の倍数であることを示せ.
この動画を見る
nを整数とする.
$n^8-6n^6+9n^4-4n^2$は720の倍数であることを示せ.
整数の基本問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
m,nを自然数とし$(m \gt n)$,pを素数とする.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{p}$のとき,
mは偶数であることを示せ.
この動画を見る
m,nを自然数とし$(m \gt n)$,pを素数とする.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{p}$のとき,
mは偶数であることを示せ.
素因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$64000001$を素因数分解すると3つの素因数分解をもつ.
$pqr(p \lt q \lt r)q$の値を求めよ.
この動画を見る
$64000001$を素因数分解すると3つの素因数分解をもつ.
$pqr(p \lt q \lt r)q$の値を求めよ.
ただの方程式ではないよ
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{x-6}{2020} + \frac{x-5}{2021} + \frac{x-4}{2022} = 3$
この動画を見る
$\frac{x-6}{2020} + \frac{x-5}{2021} + \frac{x-4}{2022} = 3$