数A - 質問解決D.B.(データベース) - Page 69

数A

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[p][g][r]^2=[a][b][c][d][e]$
(3ケタ)$^2$=5ケタ
文字はすべて素数

出典:数学オリンピック 予選問題
この動画を見る 

数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^{3n-1}-7^{2n-2}$は15の倍数であることを示せ
この動画を見る 

京都大 3次関数 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ

出典:2019年京都大学 過去問
この動画を見る 

京都大 確率 確率でも検算できるぞ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~n$まで番号の書かれた札が各2枚ずつある。$(n \geqq 3)$
[1][1][2][2]…[n][n]

2$n$枚から3枚選んで順に$x_1,x_2,x_3$とする。
$x_1 \lt x_2 \lt x_3$となる確率は?

出典:2012年京都大学 過去問
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a-b-8$と$b-c-8$がともに素数となるような素数の組$(a,b,c)$を全て求めよ

出典:2014年一橋大学 過去問
この動画を見る 

整数問題 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3p^4-5q^4-4r^2=986$
$p,q,r$は異なる素数
この動画を見る 

【数学】イッパツ理解!確率の「P」と「C」の使い分け!~全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
イッパツ理解!
数学の「確率の「P」と「C」の使い分け」についてお話しています。
この動画を見る 

数学オリンピック予選問題 超易問

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#ユークリッド互除法と不定方程式・N進法#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d,e,f,g$は異なる自然数で1~7のいずれか。

$a \times b \times c \times d+e \times f \times g$が素数となるすべてを求めよ

出典:数学オリンピック 予選問題
この動画を見る 

愛知医科大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#確率#学校別大学入試過去問解説(数学)#愛知医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1~30の自然数から異なる2つを選んでその積を考える
6の倍数となる確率を求めよ

出典:2011年愛知医科大学 過去問
この動画を見る 

チャレンジチューブ 解答編

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$を全て求めよ

(2)
$x^2+2y^2=11z^2$を満たすすべて2以上の自然数$x,y,z$を1組例示せよ
※追加$x,y,z$互いに素
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$8k+7=a^2+b^2+c^2$

(2)
$4^p(8k+7)=a^2+b^2+c^2$

上の式を満たす整数$a,b,c,k,p$は存在しないことを示せ
この動画を見る 

確率 漸化式 なぜ計算ミスに気づけたか

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロをふる
$1\rightarrow:+1$進む
$2~6\rightarrow:+2$進む

原点スタート
$n$回目に偶数上にいる確率を$P_{n}$とする
$P_{n}$を$n$で表せ
この動画を見る 

スタディーチューブ 企画「チャレンジチューブVol.5」

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$の組をすべて求めよ

(2)
$a^2+2b^2=11c^2$を満たす全て2以上の自然数$(a,b,c)$
この動画を見る 

九州大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は3の倍数でない整数
$f(x)=2x^3+a^2x^2+2b^2x+1$

(1)
$f(1),f(2)$を3で割った余りは?

(2)
$f(x)=0$は整数解がないことを証明せよ

(3)
$f(x)=0$が有理数解が存在する
$(a,b)$の組をすべて求めよ

出典:2018年九州大学 過去問
この動画を見る 

群馬大(医)整数問題 完全数の約数の総和 約数の逆数の総和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$

(1)
$\displaystyle \sum_{i=1}^n a_i$

(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$

出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
この動画を見る 

お茶の水女子大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は整数
$a^3+2b^3+4c^3=2abc$

(1)
$a,b,c$はすべて偶数であることを示せ

(2)
$(a,b,c)$を全て求めよ

出典:1985年お茶の水女子大学 過去問
この動画を見る 

宮崎大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n(n^2+a)$がすべての自然数$n$で6の倍数になる$a$の値を求めよ

出典:2019年宮崎大学 過去問
この動画を見る 

もっちゃんと真面目に数学 素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散のお話

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散 解説動画です
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(a,b,c)$の組を求めよ。
但し$a$は奇数
$a^4=b^2+2^c$

出典:2018年一橋大学 過去問
この動画を見る 

お茶の水女子大(類) 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^2+3b^2=2c^2$これを満たす自然数$(a,b,c)$は存在しないことを証明せよ

出典:お茶の水女子大学 過去問
この動画を見る 

早稲田大 整数問題 約数の総積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$10^n$の正の約数すべての積を求めよ

出典:早稲田大学 過去問
この動画を見る 

北海道大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1つのサイコロを投げ続けて、2回連続して同じ目が出たら終了。

(1)
4回以内(4回を含む)に終わる確率は?

(2)
$r$回以内に終わる確率は?
$(r \geqq 2)$

出典:2006年北海道大学 過去問
この動画を見る 

Entrance exam for Kyoto University.find all $(p,q)$ that meets $p^q+q^p=$prime number.p,q are prime .

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p^q+q^p=$素数を満たすすべての$(p,q)$を見つけてください。($p,q$は素数)

出典:京都大学 入試問題
この動画を見る 

連続k個の自然数の積はk!の倍数&整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は奇数
$n^5+2n^3-3n$は96の倍数であることを証明せよ

連続$k$個の自然数の積は$k!$の倍数である
この動画を見る 

場合の数 数学オリンピック予選

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2001$個の自然数$1,2,3…,2001$の中から何個かの数を選ぶ。
選んだ数の総和が奇数となる選び方は何通りか。
(1個も選ばないときの総和は$0$とする。)

出典:数学オリンピック 予選問題
この動画を見る 

南山大 n!0が100個並ぶ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!$は1の位から連続して100個以上の0が並ぶ。
最小の$n$を求めよ。

出典:南山大学 過去問
この動画を見る 

整数問題 合同式 二項展開

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
この動画を見る 

立命館大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^3-m^2n+m^2=0$を満たす整数$(m,n)$をすべて求めよ

出典:立命館大学 過去問
この動画を見る 

慈恵医大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$P$は素数、$a,b,c$自然数
$a$は素数

$a(ab-p^2)=C^2,b \leqq 2C$を満たす

(1)
$(a,b,c)$の組の個数を$P$を用いて表せ

(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ

出典:2017年東京慈恵会医科大学附属病院 過去問
この動画を見る 

京都大学 サイコロ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回振って$(n \geqq 2)$出た目の$($最大値$)-($最小値$)=x$とする
(1)
$x=1$となる確率

(2)
$x=5$となる確率

出典:2017年京都大学 過去問
この動画を見る 
PAGE TOP