図形と方程式
図形と方程式
福田の数学〜上智大学2025TEAP利用型文系第1問〜放物線と円の位置関係と面積

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
座標平面上の放物線$C_1:y=x^2$と
円$C_2:x^2+(y-b)^2=a^2$を考える。
ただし、$a,b$は正の実数とする。
(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための
必要十分条件は
$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。
(2)$C_1$と$C_2$が異なる$2$点で接するための
必要十分条件は
$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。
(ただし、$C_1$と$C_2$が共有点$P$で接するとは、
$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)
また、このとき$2$つの接点のうち$x$座標が
正のものを$A(\alpha,\beta)$とすると、
$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。
$A$における共通の接線の傾きが$\sqrt3$であるとき、
直線$y=\beta$の下側で、
$C_1$と$C_2$に囲まれた部分の面積は
$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。
$2025$年上智大学TEAP利用型文系過去問題
この動画を見る
$\boxed{1}$
座標平面上の放物線$C_1:y=x^2$と
円$C_2:x^2+(y-b)^2=a^2$を考える。
ただし、$a,b$は正の実数とする。
(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための
必要十分条件は
$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。
(2)$C_1$と$C_2$が異なる$2$点で接するための
必要十分条件は
$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。
(ただし、$C_1$と$C_2$が共有点$P$で接するとは、
$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)
また、このとき$2$つの接点のうち$x$座標が
正のものを$A(\alpha,\beta)$とすると、
$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。
$A$における共通の接線の傾きが$\sqrt3$であるとき、
直線$y=\beta$の下側で、
$C_1$と$C_2$に囲まれた部分の面積は
$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。
$2025$年上智大学TEAP利用型文系過去問題
福田の数学〜青山学院大学2025理工学部第4問〜折れ線の長さの和が4となる点の軌跡と面積

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$xy$平面上に$2$つの定点$A(-1,0),B(1,0)$がある。
線分$AB$上の点$P$に対して、
$xy$平面上の点$Q$は以下の条件$(a),(b)$を
満たすとする。
$(a)$$P$と$Q$の$x$座標は等しく、
$Q$の$y$座標は正である。
$(b)$$AP+PQ+QB=4$
このとき、以下の問いに答えよ。
ただし、線分は両方の端点を含むものとする。
(1)$P$の座標を$(s,0)$とするとき、
$Q$の座標を$s$を用いて表せ。
(2)$P$が線分$AB$上を$A$から$B$まで動くとき、
$Q$の軌跡を$xy$平面上に図示せよ。
(3)$P$が線分$AB$上を$A$から$B$まで動くとき、
線分$PQ$が通過する範囲の面積を求めよ。
$2025$年青山学院大学理工学部過去問題
この動画を見る
$\boxed{4}$
$xy$平面上に$2$つの定点$A(-1,0),B(1,0)$がある。
線分$AB$上の点$P$に対して、
$xy$平面上の点$Q$は以下の条件$(a),(b)$を
満たすとする。
$(a)$$P$と$Q$の$x$座標は等しく、
$Q$の$y$座標は正である。
$(b)$$AP+PQ+QB=4$
このとき、以下の問いに答えよ。
ただし、線分は両方の端点を含むものとする。
(1)$P$の座標を$(s,0)$とするとき、
$Q$の座標を$s$を用いて表せ。
(2)$P$が線分$AB$上を$A$から$B$まで動くとき、
$Q$の軌跡を$xy$平面上に図示せよ。
(3)$P$が線分$AB$上を$A$から$B$まで動くとき、
線分$PQ$が通過する範囲の面積を求めよ。
$2025$年青山学院大学理工学部過去問題
福田の数学〜早稲田大学2025商学部第2問〜x軸に関する対称移動とy=√3xに関する対称移動の組合せで決まる点列

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$a,b$を実数とする。
座標平面上の点$P_1,P_2,P_3,\cdots $は
以下の条件を満たしている。
すべての正の奇数$n$に対して、$P_n$と$P_{n+1}$は
$x$軸に関して対称な位置にある。
ただし、$P_n$が$x$軸上にあるときは$P_n=P_{n+1}$で
あるとする。
また、すべての正の偶数$n$に対して、
$P_n$と$P_{n+1}$は直線$y=ax+b$に関して対称な
位置にある。
ただし、$P_n$が直線$y=ax+b$上にあるときは
$P_n=P_{n+1}$であるとする。
(1)$a=0,b=1,P_1(0,0)$であるとき、
$P_{2025}$の座標を求めよ。
(2)$a=1,b=0,P_1(2,1)$であるとき、
$P_{2025}$の座標を求めよ。
(3)$a=\sqrt3,b=0,P_1(1,1)$であるとする。
$m,n$を正の整数とする。
$P_m$と$P_n$の距離の最大値を求めよ。
$2025$年早稲田大学商学部過去問題
この動画を見る
$\boxed{2}$
$a,b$を実数とする。
座標平面上の点$P_1,P_2,P_3,\cdots $は
以下の条件を満たしている。
すべての正の奇数$n$に対して、$P_n$と$P_{n+1}$は
$x$軸に関して対称な位置にある。
ただし、$P_n$が$x$軸上にあるときは$P_n=P_{n+1}$で
あるとする。
また、すべての正の偶数$n$に対して、
$P_n$と$P_{n+1}$は直線$y=ax+b$に関して対称な
位置にある。
ただし、$P_n$が直線$y=ax+b$上にあるときは
$P_n=P_{n+1}$であるとする。
(1)$a=0,b=1,P_1(0,0)$であるとき、
$P_{2025}$の座標を求めよ。
(2)$a=1,b=0,P_1(2,1)$であるとき、
$P_{2025}$の座標を求めよ。
(3)$a=\sqrt3,b=0,P_1(1,1)$であるとする。
$m,n$を正の整数とする。
$P_m$と$P_n$の距離の最大値を求めよ。
$2025$年早稲田大学商学部過去問題
福田の数学〜早稲田大学2025社会科学部第3問〜三角関数の最大最小と三角方程式の解の個数

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
$\theta$の関数
$f(\theta)=\cos 2\theta-\sqrt3 \sin 2\theta+4\cos\dfrac{\theta}{2}\left(\sin\dfrac{\theta}{2}-\sqrt3 \cos\dfrac{\theta}{2}\right)+2\sqrt3$
を考える。
ただし、$0\leqq \theta \leqq \pi$とする。次の問いに答えよ。
(1)$k=\sin\theta-\sqrt3 \cos \theta$とおくとき、
$f(\theta)$を$k$の関数で表せ。
(2)$f(\theta)$の最大値、最小値を求めよ。
また、そのときの$\theta$の値を求めよ。
(3) (1)の$k$に対して、$\theta$の方程式
$f(\theta)=ak$の解の個数を求めよ。
ただし、定数$a$は$0\lt a \leqq 3$とする。
$2025$年早稲田大学社会科学部過去問題
この動画を見る
$\boxed{3}$
$\theta$の関数
$f(\theta)=\cos 2\theta-\sqrt3 \sin 2\theta+4\cos\dfrac{\theta}{2}\left(\sin\dfrac{\theta}{2}-\sqrt3 \cos\dfrac{\theta}{2}\right)+2\sqrt3$
を考える。
ただし、$0\leqq \theta \leqq \pi$とする。次の問いに答えよ。
(1)$k=\sin\theta-\sqrt3 \cos \theta$とおくとき、
$f(\theta)$を$k$の関数で表せ。
(2)$f(\theta)$の最大値、最小値を求めよ。
また、そのときの$\theta$の値を求めよ。
(3) (1)の$k$に対して、$\theta$の方程式
$f(\theta)=ak$の解の個数を求めよ。
ただし、定数$a$は$0\lt a \leqq 3$とする。
$2025$年早稲田大学社会科学部過去問題
福田の数学〜早稲田大学2025人間科学部第1問(3)〜球面が平面から切り取る領域の面積

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(3)座標空間における$2$点
$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$
を直径の両端とする球面$S$がある。
球面$S$が$xy$平面を切り取る領域の面積は
$\boxed{カ}\pi$である。
また、球面$S$が$z$軸を切り取る線分の長さは
$\sqrt{\boxed{キ}}$である。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{1}$
(3)座標空間における$2$点
$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$
を直径の両端とする球面$S$がある。
球面$S$が$xy$平面を切り取る領域の面積は
$\boxed{カ}\pi$である。
また、球面$S$が$z$軸を切り取る線分の長さは
$\sqrt{\boxed{キ}}$である。
$2025$年早稲田大学人間科学部過去問題
福田のおもしろ数学543〜2つの球面に引いた接線の長さの等しい点の軌跡

福田の数学〜大阪大学2025理系第2問〜3次関数の極値と変曲点の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$p$と$m$を実数とし、
関数$f(x)=x^3+3px^2+3mx$は
$x=\alpha$で極大値をとり、
$x=\beta$で極小値をとるとする。
(1)$f(\alpha)-f(\beta)$を$p$と$m$を用いて表せ。
(2)$p$と$m$が$f(\alpha)-f(\beta)=4$を
満たしながら動くとき、
曲線$y=f(x)$の変曲点の軌跡を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{2}$
$p$と$m$を実数とし、
関数$f(x)=x^3+3px^2+3mx$は
$x=\alpha$で極大値をとり、
$x=\beta$で極小値をとるとする。
(1)$f(\alpha)-f(\beta)$を$p$と$m$を用いて表せ。
(2)$p$と$m$が$f(\alpha)-f(\beta)=4$を
満たしながら動くとき、
曲線$y=f(x)$の変曲点の軌跡を求めよ。
$2025$年大阪大学理系過去問題
福田のおもしろ数学517〜2つの楕円の共通部分の面積

単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$2$つの楕円(内部を含む)
$\dfrac{x^2}{3}+y^2\leqq 1,x^2+\dfrac{y^2}{3} \leqq 1$
の共通部分の面積を求めよ。
この動画を見る
$2$つの楕円(内部を含む)
$\dfrac{x^2}{3}+y^2\leqq 1,x^2+\dfrac{y^2}{3} \leqq 1$
の共通部分の面積を求めよ。
福田の数学〜立教大学2025経済学部第1問(4)〜2直線が1点で交わる条件

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(4)実数$a$は定数とする。
座標平面上の$2$つの直線$(a+1)x+ay=1$
$ax+(a+2)y=2$がただ$1$つの交点を持つための
$a$の条件は$\boxed{カ}$である。
$2025$年立教大学経済学部過去問題
この動画を見る
$\boxed{1}$
(4)実数$a$は定数とする。
座標平面上の$2$つの直線$(a+1)x+ay=1$
$ax+(a+2)y=2$がただ$1$つの交点を持つための
$a$の条件は$\boxed{カ}$である。
$2025$年立教大学経済学部過去問題
福田の数学〜慶應義塾大学2025経済学部第1問(2)〜2変数の不等式と領域

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)不等式
$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$
を満たす整数$m,n$を考える。
$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が
不等式①を満たすための必要十分条件は
$\boxed{セ} \leqq m \leqq \boxed{ソ}$
である。
同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、
$m$と$n$が①を満たすための必要十分条件は
$\boxed{タチ}\leqq n \leqq \boxed{ツ}$
である。よって、$m$と$n$が①を満たすとき、
$(m-n)(m+n-6)$の最大値は、
$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$
より$\boxed{ナニ}$である。
$2025$年慶應義塾大学経済学部過去問題
この動画を見る
$\boxed{1}$
(2)不等式
$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$
を満たす整数$m,n$を考える。
$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が
不等式①を満たすための必要十分条件は
$\boxed{セ} \leqq m \leqq \boxed{ソ}$
である。
同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、
$m$と$n$が①を満たすための必要十分条件は
$\boxed{タチ}\leqq n \leqq \boxed{ツ}$
である。よって、$m$と$n$が①を満たすとき、
$(m-n)(m+n-6)$の最大値は、
$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$
より$\boxed{ナニ}$である。
$2025$年慶應義塾大学経済学部過去問題
福田のおもしろ数学503〜複雑な三角方程式が実数解をもつ条件

単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\cos^2\pi(a-x)-2\cos \pi(a-x)$
$+\cos\dfrac{3\pi x}{2a}\cos \left(\dfrac{\pi x}{2a}+\dfrac{\pi}{3}\right)+2=0$
が実数解をもつような
自然数$a$の最小値を求めよ。
この動画を見る
$\cos^2\pi(a-x)-2\cos \pi(a-x)$
$+\cos\dfrac{3\pi x}{2a}\cos \left(\dfrac{\pi x}{2a}+\dfrac{\pi}{3}\right)+2=0$
が実数解をもつような
自然数$a$の最小値を求めよ。
福田の数学〜一橋大学2025文系第4問〜ベクトル方程式と領域と角を2等分するベクトル

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
原点を$O$とする座標空間内の
$2$点$A(0,3,-5),B(5,-2,10)$に対して
$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$
で定まる点$P$が存在する範囲を$D$とする。
$D$に含まれる半径$10\sqrt2$の円のうち、
その中心と原点との距離が最小となるものを
$C$とする。
円$C$の中心の座標を求めよ。
$2025$年一橋大学文系過去問題
この動画を見る
$\boxed{4}$
原点を$O$とする座標空間内の
$2$点$A(0,3,-5),B(5,-2,10)$に対して
$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$
で定まる点$P$が存在する範囲を$D$とする。
$D$に含まれる半径$10\sqrt2$の円のうち、
その中心と原点との距離が最小となるものを
$C$とする。
円$C$の中心の座標を求めよ。
$2025$年一橋大学文系過去問題
福田の数学〜一橋大学2025文系第2問〜円と円の交点を通る直線に対称な点の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
座標平面上に原点を中心とす半径$3$の円$C_1$がある。
また、直線$x=2$上の点$P$を中心とする半径$1$の円を
$C_2$とする。
(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の
$y$座標の範囲を求めよ。
(2)$C_1$と$C_2$が共有点を$2$つ持つとき、
その$2$つの共有点を通る直線を$\ell$とする。
$\ell$に関して$P$と対称な位置にある点を$Q$とする。
ただし、$P$が$\ell$上にあるときは$Q=P$とする。
$P$の$y$座標が(1)で求めた範囲を動くとき、
点$Q$の軌跡を求め、図示せよ。
$2025$年一橋大学文系過去問題
この動画を見る
$\boxed{2}$
座標平面上に原点を中心とす半径$3$の円$C_1$がある。
また、直線$x=2$上の点$P$を中心とする半径$1$の円を
$C_2$とする。
(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の
$y$座標の範囲を求めよ。
(2)$C_1$と$C_2$が共有点を$2$つ持つとき、
その$2$つの共有点を通る直線を$\ell$とする。
$\ell$に関して$P$と対称な位置にある点を$Q$とする。
ただし、$P$が$\ell$上にあるときは$Q=P$とする。
$P$の$y$座標が(1)で求めた範囲を動くとき、
点$Q$の軌跡を求め、図示せよ。
$2025$年一橋大学文系過去問題
福田の数学〜慶應義塾大学看護医療学部2025第4問〜放物線と接線の囲む面積と内積の最小値

単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$k$を実数の定数とし、
座標平面上に$2$点$A(1,-3),B(-1,k)$をとる。
また、放物線$y=x^2$を$C$とする。
以下に答えなさい。
(1)点$A$から曲線$C$に引いた$2$本の接線のうち、
傾きが正の接線を$\ell_1$とし、
傾きが負の接線を$\ell_2$とするとき、
直線$\ell_1$の方程式は$y=\boxed{テ}$であり、
直線$\ell_2$の方程式は$y=\boxed{ト}$である。
また、$2$直線$\ell_1,\ell_2$のなす角を$\theta$とすると、
$\tan\theta=\boxed{ナ}$である。
ただし、$0\lt\theta\lt\dfrac{\pi}{2}$とする。
さらに、曲線$C$と$2$直線$\ell_1,\ell_2$で囲まれた
図形の面積は$\boxed{ニ}$である。
(2)点$P$が曲線$C$全体を動くときの
$\overrightarrow{PA}・\overrightarrow{PB}$の最小値を$m$とする。
このとき、$m$を$k$を用いて表すと、
$k\geqq \boxed{ヌ}$のときは$m=\boxed{ネ}$であり、
$k\lt \boxed{ヌ}$のときは、$m=\boxed{ノ}$である。
$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る
$\boxed{4}$
$k$を実数の定数とし、
座標平面上に$2$点$A(1,-3),B(-1,k)$をとる。
また、放物線$y=x^2$を$C$とする。
以下に答えなさい。
(1)点$A$から曲線$C$に引いた$2$本の接線のうち、
傾きが正の接線を$\ell_1$とし、
傾きが負の接線を$\ell_2$とするとき、
直線$\ell_1$の方程式は$y=\boxed{テ}$であり、
直線$\ell_2$の方程式は$y=\boxed{ト}$である。
また、$2$直線$\ell_1,\ell_2$のなす角を$\theta$とすると、
$\tan\theta=\boxed{ナ}$である。
ただし、$0\lt\theta\lt\dfrac{\pi}{2}$とする。
さらに、曲線$C$と$2$直線$\ell_1,\ell_2$で囲まれた
図形の面積は$\boxed{ニ}$である。
(2)点$P$が曲線$C$全体を動くときの
$\overrightarrow{PA}・\overrightarrow{PB}$の最小値を$m$とする。
このとき、$m$を$k$を用いて表すと、
$k\geqq \boxed{ヌ}$のときは$m=\boxed{ネ}$であり、
$k\lt \boxed{ヌ}$のときは、$m=\boxed{ノ}$である。
$2025$年慶應義塾大学看護医療学部過去問題
福田の数学〜早稲田大学理工学部2025第2問〜領域に含まれる三角形の面積の最大値

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$xy$平面上で、
連立不等式
$0\lt x \leqq 1,0\leqq y \leqq \log\dfrac{1}{x}$
で定まる領域と$y$軸の
$y\geqq 0$の部分を合わせた図形を$D$とする。
$D$に含まれる三角形の最大値を求めよ。
$2025$年早稲田大学理工学部過去問題
この動画を見る
$\boxed{2}$
$xy$平面上で、
連立不等式
$0\lt x \leqq 1,0\leqq y \leqq \log\dfrac{1}{x}$
で定まる領域と$y$軸の
$y\geqq 0$の部分を合わせた図形を$D$とする。
$D$に含まれる三角形の最大値を求めよ。
$2025$年早稲田大学理工学部過去問題
福田の数学〜慶應義塾大学理工学部2025第1問(1)〜複素数平面上の点の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)複素数平面上で、方程式
$\vert z+i \vert = 2 \vert z-\sqrt3 \vert$
を満たす点$z$全体が表す図形は、
中心が$\boxed{ア}$,半径が$\boxed{イ}$である。
$2025$年慶應義塾大学理工学部過去問題
この動画を見る
$\boxed{1}$
(1)複素数平面上で、方程式
$\vert z+i \vert = 2 \vert z-\sqrt3 \vert$
を満たす点$z$全体が表す図形は、
中心が$\boxed{ア}$,半径が$\boxed{イ}$である。
$2025$年慶應義塾大学理工学部過去問題
福田の数学〜東北大学2025文系第4問〜2曲線で囲まれた2つの図形の面積が等しくなる条件

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$k$を正の実数とする。
曲線$y=x(x-2)^2$と
放物線$y=kx^2$で囲まれた$2$つの
部分の面積が等しくなるような
$k$の値を求めよ。
$2025$年東北大学文系過去問題
この動画を見る
$\boxed{4}$
$k$を正の実数とする。
曲線$y=x(x-2)^2$と
放物線$y=kx^2$で囲まれた$2$つの
部分の面積が等しくなるような
$k$の値を求めよ。
$2025$年東北大学文系過去問題
福田の数学〜東北大学2025理系第6問〜2つの正五角形の重なった図形の周の長さの最小値

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{6}$
$1$辺の長さが$1$の正五角形を$K$とする。
このとき、以下の問いに答えよ。
(1)$K$の対角線の長さを求めよ。
(2)$K$の周で囲まれた図形を$P$とする。
また、$P$を$K$の外接円の中心の周りに
角$\theta$だけ回転して得られる図形を$P_{\theta}$とする。
$P$と$P_{\theta}$の共通部分の周の長さを
$\ell_{\theta}$とする。
$\theta$が$0°\lt 72°$の範囲を動くとき、
$\ell_{\theta}$の最小値が$2\sqrt5$であることを示せ。
$2025$年東北大学理系過去問題
この動画を見る
$\boxed{6}$
$1$辺の長さが$1$の正五角形を$K$とする。
このとき、以下の問いに答えよ。
(1)$K$の対角線の長さを求めよ。
(2)$K$の周で囲まれた図形を$P$とする。
また、$P$を$K$の外接円の中心の周りに
角$\theta$だけ回転して得られる図形を$P_{\theta}$とする。
$P$と$P_{\theta}$の共通部分の周の長さを
$\ell_{\theta}$とする。
$\theta$が$0°\lt 72°$の範囲を動くとき、
$\ell_{\theta}$の最小値が$2\sqrt5$であることを示せ。
$2025$年東北大学理系過去問題
福田の数学〜東北大学2025理系第5問〜球面上の点と軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
$S$を$xyz$空間内の原点$O(0,0,0)$を中心とする
半径$1$の球面とする。
また、点$P(a,b,c)$を
点$(0,0,1)$とは異なる球面$S$上の点とする。
点$P$と点$N$を通る直線$\ell$と$xy$平面との
交点を$Q$とおく。
このとき、以下の問いに答えよ。
(1)点$Q$の座標を$a,b,c$を用いて表せ。
(2)$xy$平面上の点$(p,q,0)$と点$N$を通る直線を
$m$とする。
直線$m$と球面$S$の交点のうち、
点$N$以外の交点の座標を$p,q$を用いて表せ。
(3)点$\left(0,0,\dfrac{1}{2}\right)$を通り、
ベクトル$(3,4,5)$に直交する
平面$\alpha$を考える。
点$P$が平面$\alpha$ト球面$S$との交わりを動くとき、
点$Q$は$xy$平面上の円周上を動くことを示せ。
$2025$年東北大学理系過去問題
この動画を見る
$\boxed{5}$
$S$を$xyz$空間内の原点$O(0,0,0)$を中心とする
半径$1$の球面とする。
また、点$P(a,b,c)$を
点$(0,0,1)$とは異なる球面$S$上の点とする。
点$P$と点$N$を通る直線$\ell$と$xy$平面との
交点を$Q$とおく。
このとき、以下の問いに答えよ。
(1)点$Q$の座標を$a,b,c$を用いて表せ。
(2)$xy$平面上の点$(p,q,0)$と点$N$を通る直線を
$m$とする。
直線$m$と球面$S$の交点のうち、
点$N$以外の交点の座標を$p,q$を用いて表せ。
(3)点$\left(0,0,\dfrac{1}{2}\right)$を通り、
ベクトル$(3,4,5)$に直交する
平面$\alpha$を考える。
点$P$が平面$\alpha$ト球面$S$との交わりを動くとき、
点$Q$は$xy$平面上の円周上を動くことを示せ。
$2025$年東北大学理系過去問題
福田のおもしろ数学450〜2円の共有点の軌跡

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$2$円$C_1 : x^2+y^2=4a^2$
$C_2:(x-3)^2:y^2+a^2 \quad (a\gt 0)$
の共有点の軌跡を求めよ。
この動画を見る
$2$円$C_1 : x^2+y^2=4a^2$
$C_2:(x-3)^2:y^2+a^2 \quad (a\gt 0)$
の共有点の軌跡を求めよ。
福田の数学〜北海道大学2025理系第4問〜複素数平面上の点の軌跡と2円が共有点をもつ条件

単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$a$を正の実数とする。
(1)$a$が$1$でないとき、複素数$z$についての方程式
$a \vert z-1 \vert = \vert (a-2)z +a \vert$
を考える。
この方程式を満たす$z$全体の集合を
複素数平面上に図示せよ。
$2025$年北海道大学理系過去問題
この動画を見る
$\boxed{4}$
$a$を正の実数とする。
(1)$a$が$1$でないとき、複素数$z$についての方程式
$a \vert z-1 \vert = \vert (a-2)z +a \vert$
を考える。
この方程式を満たす$z$全体の集合を
複素数平面上に図示せよ。
$2025$年北海道大学理系過去問題
福田のおもしろ数学436〜三角方程式の解の総和の極限

単元:
#数Ⅱ#図形と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
正の整数$k$に対して
$x=2k\pi \sin x$
の$x\geqq 0$におけるすべての解の和を$s(k)$とする。
このとき、$\displaystyle \lim_{k\to\infty}\dfrac{s(k)}{k^2}$を求めよ。
この動画を見る
正の整数$k$に対して
$x=2k\pi \sin x$
の$x\geqq 0$におけるすべての解の和を$s(k)$とする。
このとき、$\displaystyle \lim_{k\to\infty}\dfrac{s(k)}{k^2}$を求めよ。
【数Ⅱ】【図形と方程式】2直線の関係4 ※問題文は概要欄

単元:
#数Ⅱ#図形と方程式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のような三角形の面積を求めよ。
(1)3点(-1,1),(3,2),(1,4)を頂点とする三角形
(2)3直線$x-3y=-5,4x+3y=-5,2x-y=5$で作られる三角形
平面上の2点をA(1,1),B(2,3)とする。
点Pが放物線$y=x^{2}+4x+11$を動くとき、$\triangle$PABの面積の最小値を求めよ。
この動画を見る
次のような三角形の面積を求めよ。
(1)3点(-1,1),(3,2),(1,4)を頂点とする三角形
(2)3直線$x-3y=-5,4x+3y=-5,2x-y=5$で作られる三角形
平面上の2点をA(1,1),B(2,3)とする。
点Pが放物線$y=x^{2}+4x+11$を動くとき、$\triangle$PABの面積の最小値を求めよ。
【数Ⅱ】【図形と方程式】2直線の関係3 ※問題文は概要欄

単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問1
直線$y=2x$を$l$とするとき、次のものを求めよ。
(1)$l$に関して、点$\rm A(5,0)$と対称な点Bの座標
(2) $l$に関して、直線$3x+y=15$と対称な直線の方程式
問2
$k$を定数とする。直線$(k+2)x+(2k-3)y=5k-4$は$k$の値に関係なく定点を通る。その定点の座標を求めよ。
問3
$x-y=1,2x-3y=1,ax+by=1$が1点で交わらなければ、3点$(1,ー1),(2,ー3),(a,b)$は一直線上にあることを証明せよ。
この動画を見る
問1
直線$y=2x$を$l$とするとき、次のものを求めよ。
(1)$l$に関して、点$\rm A(5,0)$と対称な点Bの座標
(2) $l$に関して、直線$3x+y=15$と対称な直線の方程式
問2
$k$を定数とする。直線$(k+2)x+(2k-3)y=5k-4$は$k$の値に関係なく定点を通る。その定点の座標を求めよ。
問3
$x-y=1,2x-3y=1,ax+by=1$が1点で交わらなければ、3点$(1,ー1),(2,ー3),(a,b)$は一直線上にあることを証明せよ。
【数Ⅱ】【図形と方程式】2直線の関係2 ※問題文は概要欄

単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$3x-2y+3=0,2x-4y+k=0,x-ky+5=0$が1点で交わるように、定数$k$の値を求めよ。
$x+3y=2,x+y=0,ax+2y=-4$が三角形を作らないような定数$a$の値を求めよ。
2直線$x-y+1=0,3x+2y-12=0$の交点を通り、次の条件を満たす直線の方程式を、それぞれ求めよ。
(1)直線$5xー6yー8=0$に平行である。
(2)直線$5xー6yー8=0$に垂直である。
この動画を見る
$3x-2y+3=0,2x-4y+k=0,x-ky+5=0$が1点で交わるように、定数$k$の値を求めよ。
$x+3y=2,x+y=0,ax+2y=-4$が三角形を作らないような定数$a$の値を求めよ。
2直線$x-y+1=0,3x+2y-12=0$の交点を通り、次の条件を満たす直線の方程式を、それぞれ求めよ。
(1)直線$5xー6yー8=0$に平行である。
(2)直線$5xー6yー8=0$に垂直である。
【数Ⅱ】【図形と方程式】2直線の関係1 ※問題文は概要欄

単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形$\rm ABC$について次の三直線の方程式を求めよ。またそれらが1点で交わることを示し、その点の座標を求めよ。
(1) 各辺の垂直二等分線
(2) 各頂点から対辺に下した垂線
$x+ay+1=0, ax+(a+2)y+3=0$ が次の条件を満たすとき定数$a$の値をそれぞれ求めよ。
(1) 平行である
(2) 垂直である
この動画を見る
三角形$\rm ABC$について次の三直線の方程式を求めよ。またそれらが1点で交わることを示し、その点の座標を求めよ。
(1) 各辺の垂直二等分線
(2) 各頂点から対辺に下した垂線
$x+ay+1=0, ax+(a+2)y+3=0$ が次の条件を満たすとき定数$a$の値をそれぞれ求めよ。
(1) 平行である
(2) 垂直である
【数Ⅱ】【図形と方程式】内分外分の利用 ※問題文は概要欄

単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
3点$(2,-2),(-1,1),\rm C$を頂点とする三角形が正三角形になるとき、点$\rm C$の座標を求めよ。
3点$(3,5),(2,-2),-(6,2)$から等距離にある点の座標を求めよ。
(1) 4点$\rm A(-2,3),B(5,4),C(-3,1),D$を頂点とする平行四辺形$\rm ABCD$ がある。対角線$\rm AC,BD$の交点及び、頂点$\rm D$の座標を求めよ。
(2) 4点$\rm A(-2,3),B(5,4),C(-3,1),D$を頂点とする平行四辺形について、頂点$\rm D$となりうる点の座標をすべて答えよ。
この動画を見る
3点$(2,-2),(-1,1),\rm C$を頂点とする三角形が正三角形になるとき、点$\rm C$の座標を求めよ。
3点$(3,5),(2,-2),-(6,2)$から等距離にある点の座標を求めよ。
(1) 4点$\rm A(-2,3),B(5,4),C(-3,1),D$を頂点とする平行四辺形$\rm ABCD$ がある。対角線$\rm AC,BD$の交点及び、頂点$\rm D$の座標を求めよ。
(2) 4点$\rm A(-2,3),B(5,4),C(-3,1),D$を頂点とする平行四辺形について、頂点$\rm D$となりうる点の座標をすべて答えよ。
【数Ⅱ】【図形と方程式】内分と外分の基本、点と直線 ※問題文は概要欄

単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2点$\rm A(-5),B(11)$に対して、線分$\rm AB$を$5:3$に内分する点を$\rm P$、$7:11$に外分する点を$\rm Q$とする。線分$\rm PQ$の中点の座標を求めよ。
次の3点が一直線上にあるとき、$t$の値を求めよ。
(1) $(-2,6),(0,3),(4,t)$
(2) $(1,4),(-1,t),(t,2)$
この動画を見る
2点$\rm A(-5),B(11)$に対して、線分$\rm AB$を$5:3$に内分する点を$\rm P$、$7:11$に外分する点を$\rm Q$とする。線分$\rm PQ$の中点の座標を求めよ。
次の3点が一直線上にあるとき、$t$の値を求めよ。
(1) $(-2,6),(0,3),(4,t)$
(2) $(1,4),(-1,t),(t,2)$
【数Ⅱ】【図形と方程式】内分外分重心 ※問題文は概要欄

単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形の各辺の中点の座標を$(-1,-1),(-0,-1),(2,-2)$であるとき、この三角形の3つの頂点の座標を求めよ。
$\triangle \rm ABC$の重心を$\rm G$とするとき、次の等式を証明せよ。$\rm AB^2+AC^2=BG^2+CG^2+4AG^2$
$\triangle \rm ABC$において辺$\rm AB,BC,CA$を$3:2$に内分する点を、それぞれ$\rm D,E,F$とするとき、$\triangle \rm ABC$と$\triangle \rm DEF$の重心は一致することを証明せよ。
この動画を見る
三角形の各辺の中点の座標を$(-1,-1),(-0,-1),(2,-2)$であるとき、この三角形の3つの頂点の座標を求めよ。
$\triangle \rm ABC$の重心を$\rm G$とするとき、次の等式を証明せよ。$\rm AB^2+AC^2=BG^2+CG^2+4AG^2$
$\triangle \rm ABC$において辺$\rm AB,BC,CA$を$3:2$に内分する点を、それぞれ$\rm D,E,F$とするとき、$\triangle \rm ABC$と$\triangle \rm DEF$の重心は一致することを証明せよ。
福田の数学〜東京大学2025文系第4問〜放物線で囲まれた面積の最大値

単元:
#連立方程式#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$a$は実数とする。
座標平面において、次の連立不等式の表す領域の
面積を$S(a)$とする。
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$
$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、
$S(a)$の最大値を求めよ。
$2025$年東京大学文系過去問
この動画を見る
$\boxed{4}$
$a$は実数とする。
座標平面において、次の連立不等式の表す領域の
面積を$S(a)$とする。
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$
$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、
$S(a)$の最大値を求めよ。
$2025$年東京大学文系過去問
