三角関数とグラフ - 質問解決D.B.(データベース)

三角関数とグラフ

大学入試問題#916「これは受験生に失礼」 #東海大学医学部2024 #三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
sinαsinβ=13
cosα+cosβ=15
のとき、cos(α+β)の値を求めよ。

出典:2024年東海大学医学部
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(1)〜三角方程式の基本

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (1)実数x3cosx=sin2x を満たすとき、cosxの値は    である。
この動画を見る 

三角関数 数 三角関数の不等式2【NI・SHI・NOがていねいに解説】

単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
0θ<2πのとき,次の不等式を解け。
(1) sin(θ+π4)32

(2) tan(θπ6)>1

(3) cos(θπ3)<32

(4) tan(θ+π6)3
この動画を見る 

【高校数学】全て覚える必要はない!?三角関数の性質のコツ【数学のコツ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角関数の性質のコツを解説していきます.
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第1問〜円の接線で出来る図形の面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1Cx2+(y1)2=1 に接する直線で、x切片、y切片がともに正であるものをlとする。Clx軸により囲まれた部分の面積をSCly軸により囲まれた部分の面積をTとする。S+Tが最小となるとき、STの値を求めよ。
この動画を見る 

福田のおもしろ数学129〜三角関数の最大問題

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
1+sinθ2+cosθ(θは実数)の最大値を求めよ。
この動画を見る 

福田のおもしろ数学122〜どれがどれですか?該当する関数を見つけてください

アイキャッチ画像
単元: #数Ⅱ#三角関数#指数関数と対数関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
xabcf1(x)0.9800.9210.825f2(x)0.0630.2510.565f3(x)0.8030.6440.517f4(x)0.1990.3890.565
上の数表において、f1(x), f2(x), f3(x), f4(x)は関数
sinx, cosx, π2x2, 3x
のうちのどれかである。どれがどれか?
ただし、a, b, cは0<a<b<c<π2, b=a+c2 を満たし、数値はどれも小数第4位を四捨五入してある。
この動画を見る 

福田のおもしろ数学089〜サイン100乗とコサイン100乗の和の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
θがすべての実数を動くときsin100θ+cos100θ の最大値、最小値を求めよ。
この動画を見る 

【短時間でポイントチェック!!】三角関数の合成〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
rsin(θ+α)の形に表せ。
ただし、r>0,π<απとする。
sinθcosθ
32sinθ+12cosθ
この動画を見る 

共テ数学90%取る勉強法

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(3)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
0xπ/2のとき、次の関数が最大となるxの値を求めよ。
y=sin22x+2cos2x

2023中央大学経済学部過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第1問〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 関数
y=2(sin3x+cos3x)+8sinxcosx+5 (0≦x<2π)
を考える。sinx+cosx=t とおく。
(1)ytの式で表すと
y=    t3+    t2+    t+    
である。
(2)関数yt=        において最小値        をとる。
(3)関数yx=        πにおいて最大値    +    をとる。
この動画を見る 

【わかりやすく】三角不等式(2次不等式を利用)【数学Ⅰ三角比】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
0θ180のとき、次の不等式を解け。
2cos2θcosθ<0
この動画を見る 

【わかりやすく】三角方程式(2次方程式を利用)【数学Ⅰ三角比】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
0θ180のとき、次の等式を満たすθを求めよ。
2sin2θ3cosθ=0
この動画を見る 

【わかりやすく】弧度法について解説(数学Ⅱ 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の角を弧度法で表せ。
(1)
30

(2)
45

(3)
120

(4)
90

(5)
108

(6)
390

(7)
π3

(8)
76π

(9)
94π

(10)
512n

(11)
112π

(12)
3
この動画を見る 

大学入試問題#608「絶対値・・・・」 横浜市立大学(2009) #定積分

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
π6π2|sin2 x|sin x dx

出典:2009年横浜市立大学 入試問題
この動画を見る 

大学入試問題#607「やばい、忙しすぎる」 青山学院大学(2007) #定積分

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
π2πx(cos2xsin2x)dx

出典:2007年青山学院大学 入試問題
この動画を見る 

【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)、※修正箇所:問1(1)(概要欄へ)

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#複素数と方程式#図形と計量#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#確率#図形と方程式#三角関数#複素数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
2022年度第2回全統記述高2模試全問解説動画です!
この動画を見る 

大学入試問題#593「カップラーメン食べながらでも解いて」 関西大学(2011) #三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
xy=π3のとき
sin xsin ycos x+cos yの値を求めよ

出典:2011年関西大学 入試問題
この動画を見る 

大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
n:正の整数

0πsin(2n1)xsin x dx=πを示せ

出典:1937年東京帝国大学 入試問題
この動画を見る 

福田の数学〜東北大学2023年理系第2問〜三角方程式の解の個数とその極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
2 関数f(x)=sin3x+sinxについて、以下の問いに答えよ。
(1)f(x)=0 を満たす正の実数xのうち、最小のものを求めよ。
(2)正の整数mに対して、f(x)=0を満たす正の実数xのうち、m以下のものの個数をp(m)とする。極限値limmp(m)m を求めよ。

2023東北大学理系過去問
この動画を見る 

なんやこれ?

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数のグラフの説明動画です
この動画を見る 

福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式

cos2θ=asinθ+b

が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ

2023大阪大学文系過去問
この動画を見る 

【0≦θ≦πを問題文に追加】微分すると大変かも・・・ By ~らん~

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
m,n:自然数
m2
f(θ)=sin nθcos nθ+mの最大値をα(m,n)とする
m=2{α(m,n)}2を求めよ
この動画を見る 

2023京都大学 正五角形の一辺の長さ

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)cos2θ,cos3θcosθを用いて表せ.
(2)半径1の円に内接する正五角形の一辺の長さと1.15の大小比較せよ.

2023京都大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題084〜東北大学2018年度理系第4問〜三角形の内接円と外接円の半径の関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
4 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=rRとする。
また、A=2α, B=2β, C=2γ とおく。
(1)h=4sinαsinβsinγとなることを示せ。
(2)三角形ABCが直角三角形のときh≦21が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦12が成り立つことを示せ。また等号が成り立つのはどのような場合か。

2018東北大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題079〜京都大学2018年度理系第3問〜円に内接する四角形の4辺の積の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3 αは0<α≦π2を満たす定数とし、四角形ABCDに関する次の2つの条件を考える。
(i)四角形ABCDは半径1の円に内接する。
(ii)ABC=DAB=α
条件(i)(ii)を満たす四角形のなかで、4辺の長さの積
k=AB・BC・CD・DA
が最大となるものについて、kの値を求めよ。

2018京都大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題093〜中央大学2020年度理工学部第5問〜円周上の点と三角形五角形の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#微分法と積分法#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
5 原点Oを中心とする半径1の円周上に2点
Q(cosa, sina), R(cos(a+b),sin(a+b))
をとる。ただし、a, bはa >0,b >0, a +b<π2を満たす。また、点Qからx軸へ下ろした垂線の足を点Pとし、点Rからy軸へ下した垂線の足を点Sとする。
OPQの面積とORSの面積の和をA, 五角形OPQRSの面積をBとおく。
(1)Aをaとbで表せ。
(2)bを固定して、aを0<a<π2-bの範囲で動かすとき、Aがとりうる値の範囲をbで表し、Aが最大値をとるときのaの値をbで表せ。
(3)Bはa=π8, b=π4のときに最大値をとることを示せ。

2020中央大学理工学部過去問
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第1問三角関数と対数〜三角不等式と対数が有理数とならない条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#ユークリッド互除法と不定方程式・N進法#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第一問
[ 1 ] 三角関数の値の大小関係について考えよう。
(1) x=π6のときsinx    sin2xであり、x=23πのときsinx    sin2xである。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪< ①= ②>
(2) sinxsin2xの値の大小関係を詳しく調べよう。
sin2x-sinx=sin2x(    cosx    )
であるから、sin2x-sinx>0が成り立つことは
sinx>0かつ     cosx    >0」... ①
sinx<0かつ     cosx    <0」... ②
が成り立つことと同値である。0x2πのとき、①が成り立つようなxの値の範囲は
0<x<π    
であり、②が成り立つようなxの値の範囲は
π<x<        π
である。よって、0x2πのとき、sin2x>sinxが成り立つようなxの値の範囲は
0<x<π    , π<x<        π
である。
(3)sin3xsin4xの値の大小関係を調べよう。
三角関数の加法定理を用いると、等式
sin(α+β)-sin(αβ)=2cosαsinβ...③
が得られる。α+β=4x, αβ=3xを満たすα, βに対して③を用いることにより、sin4xsin3x>0が成り立つことは
cos    >0 かつ sin    >0」...④
または
cos    <0 かつ sin    <0」...⑤
が成り立つことと同値であることがわかる。
0xπのとき、④,⑤により、sin4xsin3xが成り立つようなxの値の範囲は
0xπ    ,         π<x<        π
である。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①x ②2x ③3x
④4x ⑤5x ⑥6x ⑦x2 
32x ⑨52x ⓐ72x ⓑ92x
(4)(2), (3)の考察から、0xπのとき、sin3x>sin4x>sin2xが成り立つようなxの値の範囲は
π     < π    ,         π<x<        π
であることがわかる。
[ 2 ]
(1)a>0, a1, b>0のとき、logab=xとおくと、    が成り立つ。
    の解答群
xa=b ①xb=a ②ax=b
bx=a ④ab=x ⑤ba=x
(2)様々な対数の値が有理数か無理数かについて考えよう。
(i)log525=    , log927=        であり、どちらも有理数である。
(ii)log23が有理数と無理数のどちらかであるかを考えよう。
log23が有理数であると仮定すると、log23>0であるので、二つの自然数p, qを用いてlog23=pqと表すことができる。このとき、(1)によりlog23=pq    と変形できる。いま、2は偶数であり3は奇数であるので、    を満たす自然数p, qは存在しない。
したがって、log23は無理数であることがわかる。
(iii)a, bを2以上の自然数とするとき、(ii)と同様に考えると、「    ならばlogabは常に無理数である」ことがわかる。
    の解答群
⓪aが偶数 ①bが偶数 ②aが奇数 
③bが奇数 ④aとbがともに偶数、またはaとbがともに奇数 ⑤aとbのいずれか一方が偶数で、もう一方が奇数

2023共通テスト過去問
この動画を見る 
PAGE TOP preload imagepreload image