指数関数と対数関数 - 質問解決D.B.(データベース) - Page 6

指数関数と対数関数

指数が無理数であることの証明

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 12^m=18$のとき
①mは無理数であることを証明せよ.
②$2^{\frac{2m-1}{m-2}}$の値を求めよ.
この動画を見る 

対数の良問!値を上手く自分で評価できるかがポイント【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数m,nと$0<a\dfrac{2}{3}$が成り立つことを示せ。

大阪大過去問
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(1)〜漸化式の解法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (1)数列\left\{a_n\right\}が次の条件を満たしている。\hspace{30pt}\\
(\textrm{i})a_1=a_2=4\hspace{110pt}\\
(\textrm{ii})a_{n+2}=a_n^{\log_2a_{n+1}}\ \ \ (n=1,2,3,\ldots)\hspace{19pt}\\
このとき、\log_2(\log_2a_{10})=\boxed{\ \ ア\ \ }である。
\end{eqnarray}

2022早稲田大学商学部過去問
この動画を見る 

素数になる4次式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
mは整数である.
$m^4+5m^3+6m^2+5m+1$が素数となるmをすべて求めよ.
この動画を見る 

チリの大穴が地球を潰すまで計算した

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
チリの大穴の直径が25mだったのに1週間で2倍になりました。
直径が1週間で2倍になると仮定したときいつ地球は崩壊しますか。
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第4問〜3次関数の増減と3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 自然数a,bに対し、3次関数f_{a,b}(x),g_{a,b}(x)を\hspace{150pt}\\
f_{a,b}(x)=x^3+3ax^2+3bx+8\\
g_{a,b}(x)=8x^3+3bx^2+3ax+1\\
で定める。次の問いに答えよ。\\
(1)次の条件(\textrm{I})(\textrm{II})の両方を満たす自然数の組(a,b)\\
でa+b \leqq 9となるものを全て求めよ。\\
(\textrm{I})f_{a,b}(x)が極値をもつ\\
(\textrm{II})g_{a,b}(x)が極値をもつ\\
(2)3次方程式f_{a,b}(x)=0の3つの解が\alpha,\beta,\gammaであるとき\\
3次方程式g_{a,b}(x)=0の解を\alpha,\beta,\gammaで表せ。\\
(3)次の条件(\textrm{III})を満たす自然数の組(a,b)でa+b \leqq 9となるものを全て求めよ。\\
(\textrm{III})3次方程式f_{a,b}(x)=0が相異なる3つの実数解をもつ。
\end{eqnarray}

2022早稲田大学教育学部過去問
この動画を見る 

解はあれだけですか?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
xは正の実数である.
$3^x+3^{\frac{1}{x}}=6$
これを解け.
この動画を見る 

わざとらしい連立方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{4x^2}{1+4x^2}=y$
$\dfrac{4y^2}{1+4y^2}=z$
$\dfrac{4z^2}{1+4z^2}=x$
これを解け.
この動画を見る 

指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは正の実数である.
$x^{x+y}=y^{12},y^{x+y}=x^3$
これを解け.
この動画を見る 

【数学ネタ】近似値を信用しない人 #Shorts

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$2^{30}$の桁数を求めよ。
ただし、$\log_{10}2$=0.3010とする。
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2^{2022} + 2^{2020}}{10} = 2^▢$
▢=?
この動画を見る 

ベトナム数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a+b+c=2022$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}$
$\dfrac{1}{a^{2023}}+\dfrac{1}{b^{2023}}+\dfrac{1}{c^{2023}}=?$
これを解け.

ベトナム数学オリンピック過去問
この動画を見る 

【数Ⅱ】常用対数の使い方【対数ってなんのためにあるの? 人類の計算力に革命を与えた技 桁数問題から罹患者数の増え方、複利計算をマスターしよう】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
常用対数の使い方に関して解説していきます.
この動画を見る 

指数の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは実数である.
$2^x+2^y=10,4^{x+y}=5,2^{x-y}+2^{y-x}=?$
これを解け.
この動画を見る 

指数の基本

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 5^a=30^b=1296,\dfrac{ab}{a-b}$の値を求めよ.
この動画を見る 

すっきりするただの計算問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x=\sqrt2+1$のとき,
$\dfrac{x^7-x}{x^8+1}$の値を求めよ.
この動画を見る 

ただの約分

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1+2+3+4+8+・・・・・・+2^{2024}}{1+8+64+512+・・・・・・+2^{2022}}$
これを計算せよ.
この動画を見る 

【数Ⅱ】対数のグラフと不等式【底に注意してグラフを描こう。指数関数と全く同じ!?】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
対数のグラフと不等式に関して解説していきます.
この動画を見る 

【数Ⅱ】指数関数のグラフと不等式【底が1より大きいか小さいかで全然違うグラフになる!】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
指数関数のグラフと不等式に関して解説していきます.
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(2)〜指数計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (2)aを正の実数、pを実数とする。a^{2p}=3のとき、\\
\frac{a^{2p}-a^{-2p}}{a^p-a^{-p}}\ の値は\ \boxed{\ \ ア\ \ }\ である。
\end{eqnarray}

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(1)〜対数計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (1)\log_3\sqrt6\ -\log_3\frac{2}{3}+\log_3\sqrt2\ を有理数で表すと\ \boxed{\ \ ア\ \ }\ である。
\end{eqnarray}

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第3問〜4次関数のグラフの接線と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ xy平面上の曲線Cをy=x^2(x-1)(x+2)とする。
\\(1)Cに2点で下から接する直線Lの方程式は\\
\\
y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}\ である。\\
\\
(2)CとLが囲む図の斜線部分の面積(※動画参照)は\\
\\
\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}\ となる。\\
\\
ただし、次の公式を使ってもかまわない(m,nは正の整数)\\
\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}\\
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

簡単な指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^x-3^x=\sqrt{6^x-9^x}$
これの実数解を求めよ.
この動画を見る 

【数Ⅱ】対数の定義と方程式【対数の意味とは。計算公式・底の変換公式を使いこなして対数方程式を解こう】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
対数の定義と方程式に関して解説していきます.
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ aを2以上の整数、pを整数とし、s=2^{2p+1}とおく。実数x,yが等式\\
2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y\\
を満たすとき、yをxの関数として表したものをy=f(x)とする。\\
(1)対数の記号を使わずに、f(x)をa,pおよびxを用いて表せ。\\
(2)a=2,\ p=0とする。このとき、n \leqq f(m)を満たし、かつ、m+nが正となる\\
ような整数の組(m,n)の個数を求めよ。\\
(3)y=f(x)(0 \leqq x \leqq 2^{a+1})の最大値が2^{3a}以下となるような整数pの\\
最大値と最小値を、それぞれaを用いて表せ。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

2022乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(5+2 \sqrt 6)^{1011}(\sqrt 3 - \sqrt 2)^{2022}$
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 座標平面上の点A(a,b)を1つ固定し、曲線y=x^2上の点P(x,x^2)と点A\\
との距離の2乗をg(x)とおく。関数y=g(x)のグラフが区間(-\infty,\infty)において下に凸\\
となるための条件はb \leqq \boxed{\ \ ア\ \ }\ となることである。b \gt \boxed{\ \ ア\ \ }\ のときy=g(x)のグラフは\\
2つの変曲点をもち、そのx座標は\ \boxed{\ \ イ\ \ }\ 及び\ \boxed{\ \ ウ\ \ }\ である。\\
ただし\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }とする。また、関数y=g(x)が極小となるxがただ1つであるために\\
a,bが満たすべき条件をb \leqq F(a)と書くと、F(a)=\boxed{\ \ エ\ \ } である。\\
b= F(a)のとき、関数y=g(x)はx=\boxed{\ \ オ\ \ }において最小値をとる。\\
さらに、連立不等式x \geqq 0,\ y \geqq x^2が表す領域をDとするとき、\\
曲線y=F(x)のDに含まれる部分の長さLを求めると、L=\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

どうってことない計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{\log_2 10000}+\dfrac{1}{\log_5 10000}$
これを解け.
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(3)〜集合と対数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (3)関数f(x)=\log_{\frac{1}{3}}\sqrt{3x^3-2x^2}とg(x)=\log_9(3x^2-2)の定義域をそれぞれ\\
集合A,Bで表すと、A\cap B=\left\{x|xはx \gt \boxed{\ \ オ\ \ }\ を満たす実数\right\}である。\\
実数xが集合A\cap Bの要素であるとき、f(x)+g(x) \lt 0となるための条件は\\
\boxed{\ \ オ\ \ } \lt x \lt \boxed{\ \ カ\ \ }またはx \gt \boxed{\ \ キ\ \ }となることである。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第4問〜指数関数と直線の位置関係と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 曲線C:y=e^xを考える。\\
(1)a,bを実数とし、a \geqq 0とする。曲線Cと直線y=ax+bが共有点をもつため\\
のaとbの条件を求めよ。\\
(2)正の実数tに対し、C上の点A(t,e^t)を中心とし、直線y=xに接する円Dを\\
考える。直線y=xと円Dの接点Bのx座標は\boxed{\ \ タ\ \ }であり、\\
円Dの半径は\boxed{\ \ チ\ \ }である。線分ABを3:2に内分する点をPとし、Pのx座標、y座標\\
をそれぞれX(t),Y(t)とする。このとき、等式\\
\lim_{t \to \infty}\frac{Y(t)-kX(t)}{\sqrt{\left\{X(t)\right\}^2+\left\{Y(t)\right\}^2}}=0\\
が成り立つような実数kを定めるとk=\boxed{\ \ ツ\ \ }である。\\
ただし、\lim_{t \to \infty}te^{-t}=0である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP