不定積分・定積分
不定積分・定積分
福田の数学〜慶應義塾大学2024総合政策学部第2問〜定積分で表された関数の最大値

単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
負でない実数 $t$ に対して定義される関数 $\displaystyle\frac{9}{2}t-3\int^{1}_{0}|(x-t)(x-2t)|dx$ の最大値と、そのときの $t$ の値は?
この動画を見る
負でない実数 $t$ に対して定義される関数 $\displaystyle\frac{9}{2}t-3\int^{1}_{0}|(x-t)(x-2t)|dx$ の最大値と、そのときの $t$ の値は?
福田の数学〜慶應義塾大学2024総合政策学部第2問〜定積分で表された関数の最大値

単元:
#微分法と積分法#不定積分・定積分
指導講師:
問題文全文(内容文):
負でない実数$\ t\ $に対して定義される関数$\displaystyle \ f(t)\ =\ \frac{9}{2}t-3\int_{0}^{1}|(x-t)(x-2t)|dx\ \ $の最大値を求めよ。
この動画を見る
負でない実数$\ t\ $に対して定義される関数$\displaystyle \ f(t)\ =\ \frac{9}{2}t-3\int_{0}^{1}|(x-t)(x-2t)|dx\ \ $の最大値を求めよ。
福田のおもしろ数学265〜直交する2つの円柱の共通部分の体積

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$
x軸、y軸を軸とする半径1の円柱T_1 , \ T_2の共通部分の体積を求めよ。$(図は動画参照)
この動画を見る
$
x軸、y軸を軸とする半径1の円柱T_1 , \ T_2の共通部分の体積を求めよ。$(図は動画参照)
福田の数学〜上智大学2024TEAP利用型文系第3問(4)〜線分の通過範囲の面積

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}(4)$座標平面上で放物線$y=x^2$上の点P$(t,t^2)(0 \leqq t \leqq 1)$における接線$y=-(x+1)^2$の二つの共有点の中点をQとする。ただし、共有点が1つの場合は、その共有点をQとする。Qの座標は$(\boxed{ユ}t+\boxed{ヨ}
,\boxed{ラ}t^2+\boxed{リ}t+\boxed{ル})$である。
tが$0 \leqq t \leqq1$の範囲を動くとき線分PQが動いてできる図形の面積は$\frac{\boxed{レ}}{\boxed{ロ}}$である
この動画を見る
$\boxed{2}(4)$座標平面上で放物線$y=x^2$上の点P$(t,t^2)(0 \leqq t \leqq 1)$における接線$y=-(x+1)^2$の二つの共有点の中点をQとする。ただし、共有点が1つの場合は、その共有点をQとする。Qの座標は$(\boxed{ユ}t+\boxed{ヨ}
,\boxed{ラ}t^2+\boxed{リ}t+\boxed{ル})$である。
tが$0 \leqq t \leqq1$の範囲を動くとき線分PQが動いてできる図形の面積は$\frac{\boxed{レ}}{\boxed{ロ}}$である
#同志社大学2021#定積分_62

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#同志社大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} (2x-1)\log x \ dx$を解け.
2021同志社大学過去問題
この動画を見る
$\displaystyle \int_{1}^{e} (2x-1)\log x \ dx$を解け.
2021同志社大学過去問題
#京都帝国大学1935#不定積分_60

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \dfrac{x^2}{\sqrt{1-x^2}}dx$を解け.
1935京都帝国大学過去問題
この動画を見る
$\displaystyle \int_{}^{} \dfrac{x^2}{\sqrt{1-x^2}}dx$を解け.
1935京都帝国大学過去問題
#弘前大学2023#定積分_58

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#弘前大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \dfrac{dx}{\sqrt{3+2x-x^2}}$を解け.
2023弘前大学過去問題
この動画を見る
$\displaystyle \int_{1}^{2} \dfrac{dx}{\sqrt{3+2x-x^2}}$を解け.
2023弘前大学過去問題
#弘前大学2023#定積分_57

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#弘前大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \dfrac{dx}{3+2x-x^2}$を解け.
2023弘前大学過去問題
この動画を見る
$\displaystyle \int_{1}^{2} \dfrac{dx}{3+2x-x^2}$を解け.
2023弘前大学過去問題
京大らしさ全開の不朽の名作 京都帝国大学1937 大学入試問題#932

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \dfrac{dx}{(x^2-1)^2}$を解け.
1937京都帝国大学過去問題
この動画を見る
$\displaystyle \int_{}^{} \dfrac{dx}{(x^2-1)^2}$を解け.
1937京都帝国大学過去問題
#弘前大学2024#定積分_56

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#弘前大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\log 2} \dfrac{dx}{2e^x-3e^{-x}-5}$を解け.
弘前大学過去問
この動画を見る
$\displaystyle \int_{0}^{\log 2} \dfrac{dx}{2e^x-3e^{-x}-5}$を解け.
弘前大学過去問
#京都大学1937#不定積分_54

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \dfrac{x^2}{\sqrt{1-x^6}}dx$を解け.
1937京都帝国大学過去問題
この動画を見る
$\displaystyle \int_{}^{} \dfrac{x^2}{\sqrt{1-x^6}}dx$を解け.
1937京都帝国大学過去問題
#電気通信大学2024#不定積分_53

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#電気通信大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} e^x \sqrt{6-e^x} dx$を解け.
2024電気通信大学過去問題
この動画を見る
$\displaystyle \int_{}^{} e^x \sqrt{6-e^x} dx$を解け.
2024電気通信大学過去問題
突破口を探す不定積分 京都帝国大学1936 大学入試問題#931

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$ \sec \ x=\dfrac{1}{\cos x}$とする.
$\displaystyle \int_{}^{} \sec \ x \ \tan^2 x \ dx$を解け.
1936京都帝国大学過去問題
この動画を見る
$ \sec \ x=\dfrac{1}{\cos x}$とする.
$\displaystyle \int_{}^{} \sec \ x \ \tan^2 x \ dx$を解け.
1936京都帝国大学過去問題
#京都帝国大学1935#不定積分_52

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \sin x \ \cos 2x \ dx$を解け.
1935京都帝国大学過去問題
この動画を見る
$\displaystyle \int_{}^{} \sin x \ \cos 2x \ dx$を解け.
1935京都帝国大学過去問題
#京都帝国大学1937#不定積分_51

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} x \ \sin x\ \cos x \ dx$を解け.
1937京都帝国大学過去問題
この動画を見る
$\displaystyle \int_{}^{} x \ \sin x\ \cos x \ dx$を解け.
1937京都帝国大学過去問題
定積分の微分の基本問題 島根大学後期2024 大学入試問題#930

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#島根大学
指導講師:
ますただ
問題文全文(内容文):
$a$の正の定数とする.
関数$g(x)$が,$x\gt 0$で定義された連続関数で,
次の等式をみたすとき,$g(x)$と$a$の値を求めよ.
$\displaystyle \int_{a}^{x^3} g(u) du =\log x$
2024島根大学後期過去問題
この動画を見る
$a$の正の定数とする.
関数$g(x)$が,$x\gt 0$で定義された連続関数で,
次の等式をみたすとき,$g(x)$と$a$の値を求めよ.
$\displaystyle \int_{a}^{x^3} g(u) du =\log x$
2024島根大学後期過去問題
#三重大学医学部2023#不定積分_49

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#三重大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} x \ \log (x+1)\ dx$を解け.
2023三重大学医学部過去問題
この動画を見る
$\displaystyle \int_{}^{} x \ \log (x+1)\ dx$を解け.
2023三重大学医学部過去問題
#三重大学医学部2023#不定積分_47

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#三重大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} (x+1)\log x \ dx$
を解け.
2023三重大学医学部過去問題
この動画を見る
$\displaystyle \int_{}^{} (x+1)\log x \ dx$
を解け.
2023三重大学医学部過去問題
#産業医科大学2024#定積分_46

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#産業医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \sqrt{3-x^2+2x}\ dx$
を解け.
2024産業医科大学過去問題
この動画を見る
$\displaystyle \int_{-1}^{1} \sqrt{3-x^2+2x}\ dx$
を解け.
2024産業医科大学過去問題
#島根大学2019#不定積分_44

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#島根大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} (\sin x)^{2018} \cos x \ dx$
を解け.
2019島根大学過去問題
この動画を見る
$\displaystyle \int_{}^{} (\sin x)^{2018} \cos x \ dx$
を解け.
2019島根大学過去問題
#産業医科大学2023#定積分_43

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#産業医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} x^2\log x \ dx$を解け.
2023産業医科大学過去問題
この動画を見る
$\displaystyle \int_{1}^{e} x^2\log x \ dx$を解け.
2023産業医科大学過去問題
#島根大学2024#不定積分_42

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#島根大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \dfrac{x^2+x+1}{x^2+1}dx$
を解け.
2024島根大学過去問題
この動画を見る
$\displaystyle \int_{}^{} \dfrac{x^2+x+1}{x^2+1}dx$
を解け.
2024島根大学過去問題
激ムズ積分 大技で卍固め By BBBさん

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \dfrac{\sin^3x}{\sqrt{2-\sin 2x}}dx$
を解け.
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} \dfrac{\sin^3x}{\sqrt{2-\sin 2x}}dx$
を解け.
#関西大学2024#不定積分_40

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#関西大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} x^2\cos \ 2x\ dx$
を解け.
2022関西大学過去問題
この動画を見る
$\displaystyle \int_{}^{} x^2\cos \ 2x\ dx$
を解け.
2022関西大学過去問題
#関西大学2022#不定積分_39

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#関西大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} (\log x^2 )dx$
を解け.
2022関西大学過去問題
この動画を見る
$\displaystyle \int_{}^{} (\log x^2 )dx$
を解け.
2022関西大学過去問題
大学入試問題#925「初手が見えれば一直線」 #関西大学2023

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#関西大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \left(\dfrac{1}{\sqrt x}\ \sin\ (3\sqrt x)\ \cos \ (5\sqrt x)\right)dx$
を解け.
2023関西大学過去問題
この動画を見る
$\displaystyle \int_{}^{} \left(\dfrac{1}{\sqrt x}\ \sin\ (3\sqrt x)\ \cos \ (5\sqrt x)\right)dx$
を解け.
2023関西大学過去問題
#関西大学2022#定積分_38

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#関西大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt2} \dfrac{2\sqrt2}{x^2+2}dx$
を解け.
2022関西大学過去問題
この動画を見る
$\displaystyle \int_{0}^{\sqrt2} \dfrac{2\sqrt2}{x^2+2}dx$
を解け.
2022関西大学過去問題
福田の数学〜明治大学2024全学部統一III第1問(2)〜定積分の計算

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle \int_{-3}^3 \sqrt{x^2} dx=\fbox{イ}$
この動画を見る
$\displaystyle \int_{-3}^3 \sqrt{x^2} dx=\fbox{イ}$
福田の数学〜明治大学2024全学部統一III第1問(2)〜定積分の計算

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle \int_{-3}^3 \sqrt{x^2} dx$
この動画を見る
$\displaystyle \int_{-3}^3 \sqrt{x^2} dx$
#高知工科大学2024#定積分_25#元高校教員

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#高知工科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{3} x|x-2| dx$
出典:2024年 高知工科大学
この動画を見る
$\displaystyle \int_{-1}^{3} x|x-2| dx$
出典:2024年 高知工科大学
