数Ⅱ
数Ⅱ
【短時間でポイントチェック!!】対数方程式・対数不等式〔現役講師解説、数学〕

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
①$\log_{3}x=2$
②$\log_{\sqrt{2}}x≧4$
③$\log_{\frac{1}{3}}x>2$
この動画を見る
①$\log_{3}x=2$
②$\log_{\sqrt{2}}x≧4$
③$\log_{\frac{1}{3}}x>2$
福田の数学〜(2)から先行きが怪しくなってくる〜慶應義塾大学2023年経済学部第4問〜対数関数の最大

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
x,yを正の実数とし、$2\log_{ 2 } x+\log_{ 2 } y$とする。また、kを正の実数とする。
(1)x,yがx+y=kまたは、kx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_1$及びその時のxの値を、Kを用いて表せ。
(2)x,yはx+y=KまたはKx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_2$が(1)の$z_1$と一致するための必要十分条件を求めよ。
(3)nを自然数とし、$K=2^\frac{n}{5}$とする。(2)の$z_2$について、$\dfrac{3}{2} \lt z_2 \lt \dfrac{7}{2}$を満たす。
nの最大値および最小値を求めよ。必要があれば$1.58 \lt \log_{2}3 \lt 1.59$を用いよ。
2023慶應義塾大学経済学部過去問
この動画を見る
x,yを正の実数とし、$2\log_{ 2 } x+\log_{ 2 } y$とする。また、kを正の実数とする。
(1)x,yがx+y=kまたは、kx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_1$及びその時のxの値を、Kを用いて表せ。
(2)x,yはx+y=KまたはKx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_2$が(1)の$z_1$と一致するための必要十分条件を求めよ。
(3)nを自然数とし、$K=2^\frac{n}{5}$とする。(2)の$z_2$について、$\dfrac{3}{2} \lt z_2 \lt \dfrac{7}{2}$を満たす。
nの最大値および最小値を求めよ。必要があれば$1.58 \lt \log_{2}3 \lt 1.59$を用いよ。
2023慶應義塾大学経済学部過去問
kとk+1ということは・・・【京都大学】【数学 入試問題】

単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ
京都大過去問
この動画を見る
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ
京都大過去問
【短時間でポイントチェック!!】三角関数の合成〔現役講師解説、数学〕

単元:
#数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$r \sin(\theta+\alpha)$の形に表せ。
ただし、$r>0,-\pi<\alpha≦\pi$とする。
①$\sin\theta-\cos\theta$
②$\frac{\sqrt{3}}{2}\sin\theta+\frac{1}{2}\cos\theta$
この動画を見る
$r \sin(\theta+\alpha)$の形に表せ。
ただし、$r>0,-\pi<\alpha≦\pi$とする。
①$\sin\theta-\cos\theta$
②$\frac{\sqrt{3}}{2}\sin\theta+\frac{1}{2}\cos\theta$
共テ数学90%取る勉強法

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る
共通テスト数学90%取る勉強法説明動画です
【数Ⅱ】微分法と積分法:定積分:積分を含む関数 PRIMEⅡ 531(1)

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を満たす関数f(x)を求めよ。
$f(x)=6x-\int_{0}^{3}f(t)dt$
この動画を見る
次の等式を満たす関数f(x)を求めよ。
$f(x)=6x-\int_{0}^{3}f(t)dt$
【短時間でポイントチェック!!】半角の公式〔現役講師解説、数学〕

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$\frac{\pi}{2}<\theta<\pi$で$\sin\theta=\frac{1}{3}$のとき$\cos\frac{\theta}{2}$は?
この動画を見る
$\frac{\pi}{2}<\theta<\pi$で$\sin\theta=\frac{1}{3}$のとき$\cos\frac{\theta}{2}$は?
福田の数学〜双曲線と直線の位置関係を考えよう〜明治大学2023年全学部統一Ⅲ第3問〜双曲線と直線

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 座標平面上の双曲線$x^2$-$4y^2$=5を$C$とおき、点(1,0)を通り傾き$m$が正となる直線を$l$とおく。$C$の漸近線は$y$=$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$と$y$=$-\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$である。また、$l$と$C$の共有点がただ1つとなるのは、$m$が$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$または$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ のときである。
$m$=$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$ならば$l$は$C$の接線となる。ここで$a$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ とおく。$m$<$a$であるときに、$l$と$C$の共有点の$y$座標のうち最大のものを$y_m$とすれば、
$y_m$=$\displaystyle\frac{m}{\boxed{\ \ キ\ \ }-\boxed{\ \ ク\ \ }m^2}\left(-\boxed{\ \ ケ\ \ }+\sqrt{\boxed{\ \ コ\ \ }-\boxed{\ \ サシ\ \ }m^2}\right)$
となる。このとき、$\displaystyle\lim_{m \to a-0}y_m$=$\boxed{\ \ ス\ \ }$ が成り立つ。
この動画を見る
$\Large{\boxed{3}}$ 座標平面上の双曲線$x^2$-$4y^2$=5を$C$とおき、点(1,0)を通り傾き$m$が正となる直線を$l$とおく。$C$の漸近線は$y$=$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$と$y$=$-\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$である。また、$l$と$C$の共有点がただ1つとなるのは、$m$が$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$または$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ のときである。
$m$=$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$ならば$l$は$C$の接線となる。ここで$a$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ とおく。$m$<$a$であるときに、$l$と$C$の共有点の$y$座標のうち最大のものを$y_m$とすれば、
$y_m$=$\displaystyle\frac{m}{\boxed{\ \ キ\ \ }-\boxed{\ \ ク\ \ }m^2}\left(-\boxed{\ \ ケ\ \ }+\sqrt{\boxed{\ \ コ\ \ }-\boxed{\ \ サシ\ \ }m^2}\right)$
となる。このとき、$\displaystyle\lim_{m \to a-0}y_m$=$\boxed{\ \ ス\ \ }$ が成り立つ。
【短時間でポイントチェック!!】2倍角の公式〔現役講師解説、数学〕

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$0<\alpha<\pi$で$\cos\alpha=-\frac{4}{5}$のとき、$\sin2\alpha,\cos2\alpha$は?
この動画を見る
$0<\alpha<\pi$で$\cos\alpha=-\frac{4}{5}$のとき、$\sin2\alpha,\cos2\alpha$は?
数学どうにかしたい人へ

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
福田の数学〜部分積分と極限のコンボ〜明治大学2023年全学部統一Ⅲ第2問〜部分積分と極限

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $t$>0 に対して、次の2つの定積分を考える。
$I$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\sin xdx$, $J$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx$
部分積分を用いれば$I$=$\boxed{\ \ ア\ \ }$-$tJ$, $J$=$\boxed{\ \ イ\ \ }$+$tI$ が成り立つことが分かるので、
$I$=$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$, $J$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ エ\ \ }}$
を得る。したがって、$\displaystyle\lim_{t \to \infty}\frac{\log\boxed{\ \ エ\ \ }}{t}$=0 を用いれば、
$\displaystyle\lim_{t \to \infty}\frac{1}{t}\log\left(\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx-\frac{t}{\boxed{\ \ エ\ \ }}\right)$=$\boxed{\ \ カ\ \ }$
となる。
$\boxed{\ \ ア\ \ }$、$\boxed{\ \ イ\ \ }$、$\boxed{\ \ ウ\ \ }$の解答群
⓪-1 ①1 ②2-$\pi$ ③$\pi$ ④1-$t$ ⑤1+$t$
⑥1-$t^2$ ⑦1+$t^2$ ⑧$-e^{-\frac{\pi}{2}t}$ ⑨$e^{-\frac{\pi}{2}t}$
$\boxed{\ \ ウ\ \ }$、$\boxed{\ \ オ\ \ }$の解答群
⓪$t$ ①1 ②-1$-te^{-\frac{\pi}{2}t}$ ③-1$+te^{-\frac{\pi}{2}t}$ ④1$-te^{-\frac{\pi}{2}t}$
⑤1$+te^{-\frac{\pi}{2}t}$ ⑥-$t$-$e^{-\frac{\pi}{2}t}$ ⑦-$t$+$e^{-\frac{\pi}{2}t}$ ⑧$t$-$e^{-\frac{\pi}{2}t}$ ⑨$t$+$e^{-\frac{\pi}{2}t}$
$\boxed{\ \ カ\ \ }$の解答群
⓪0 ①$-\frac{\pi}{2}$ ②$-\frac{\pi}{3}$ ③$-\frac{\pi}{4}$ ④$-\frac{\pi}{6}$ ⑤$-\frac{\pi}{12}$ ⑥$\frac{\pi}{6}$
⑦$\frac{\pi}{4}$ ⑧$\frac{\pi}{3}$ ⑨$\frac{\pi}{2}$
この動画を見る
$\Large{\boxed{2}}$ $t$>0 に対して、次の2つの定積分を考える。
$I$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\sin xdx$, $J$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx$
部分積分を用いれば$I$=$\boxed{\ \ ア\ \ }$-$tJ$, $J$=$\boxed{\ \ イ\ \ }$+$tI$ が成り立つことが分かるので、
$I$=$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$, $J$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ エ\ \ }}$
を得る。したがって、$\displaystyle\lim_{t \to \infty}\frac{\log\boxed{\ \ エ\ \ }}{t}$=0 を用いれば、
$\displaystyle\lim_{t \to \infty}\frac{1}{t}\log\left(\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx-\frac{t}{\boxed{\ \ エ\ \ }}\right)$=$\boxed{\ \ カ\ \ }$
となる。
$\boxed{\ \ ア\ \ }$、$\boxed{\ \ イ\ \ }$、$\boxed{\ \ ウ\ \ }$の解答群
⓪-1 ①1 ②2-$\pi$ ③$\pi$ ④1-$t$ ⑤1+$t$
⑥1-$t^2$ ⑦1+$t^2$ ⑧$-e^{-\frac{\pi}{2}t}$ ⑨$e^{-\frac{\pi}{2}t}$
$\boxed{\ \ ウ\ \ }$、$\boxed{\ \ オ\ \ }$の解答群
⓪$t$ ①1 ②-1$-te^{-\frac{\pi}{2}t}$ ③-1$+te^{-\frac{\pi}{2}t}$ ④1$-te^{-\frac{\pi}{2}t}$
⑤1$+te^{-\frac{\pi}{2}t}$ ⑥-$t$-$e^{-\frac{\pi}{2}t}$ ⑦-$t$+$e^{-\frac{\pi}{2}t}$ ⑧$t$-$e^{-\frac{\pi}{2}t}$ ⑨$t$+$e^{-\frac{\pi}{2}t}$
$\boxed{\ \ カ\ \ }$の解答群
⓪0 ①$-\frac{\pi}{2}$ ②$-\frac{\pi}{3}$ ③$-\frac{\pi}{4}$ ④$-\frac{\pi}{6}$ ⑤$-\frac{\pi}{12}$ ⑥$\frac{\pi}{6}$
⑦$\frac{\pi}{4}$ ⑧$\frac{\pi}{3}$ ⑨$\frac{\pi}{2}$
福田の数学〜zを正負で場合分けできないときどうする〜明治大学2023年全学部統一Ⅲ第1問(2)〜複素数に関する2次方程式

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)複素数$z$の方程式
$z^2$-3|$z$|+2=0
を考える。この方程式は$\boxed{\ \ イ\ \ }$個の解を持ち、このうち実数でないかの個数は$\boxed{\ \ ウ\ \ }$個である。
この動画を見る
$\Large{\boxed{1}}$ (2)複素数$z$の方程式
$z^2$-3|$z$|+2=0
を考える。この方程式は$\boxed{\ \ イ\ \ }$個の解を持ち、このうち実数でないかの個数は$\boxed{\ \ ウ\ \ }$個である。
整式の剰余 落とし穴注意!

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2024}$を$(x^4-x^2+1)^2$
で割ったあまり
この動画を見る
$x^{2024}$を$(x^4-x^2+1)^2$
で割ったあまり
気づけば一瞬!!!

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{\pi}{11}\cos\dfrac{2\pi}{11}\cos\dfrac{3\pi}{11}\cos\dfrac{4\pi}{11}\cos\dfrac{5\pi}{11}$の値を求めよ.
この動画を見る
$\cos\dfrac{\pi}{11}\cos\dfrac{2\pi}{11}\cos\dfrac{3\pi}{11}\cos\dfrac{4\pi}{11}\cos\dfrac{5\pi}{11}$の値を求めよ.
福田の数学〜微分積分の基本問題〜明治大学2023年全学部統一ⅠⅡAB第2問〜関数の増減と3次方程式の解

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $k$を正の実数とし、$x$の関数$f(x)$を
$f(x)$=$x^3$$-3kx^2$$+9(k^2+2k-3)$
により定める。関数$f(x)$は$x$=$\boxed{\ \ ア\ \ }$で極大値$\boxed{\ \ イ\ \ }k^2$+$\boxed{\ \ ウエ\ \ }k$-$\boxed{\ \ オカ\ \ }$をとり、
$x$=$\boxed{\ \ キ\ \ }$で極小値$-\boxed{\ \ ク\ \ }k^3$+$\boxed{\ \ イ\ \ }k^2$+$\boxed{\ \ ウエ\ \ }k$-$\boxed{\ \ オカ\ \ }$ をとる。
以下、$f(x)$の極小値が0になる$k$の値を$a$,$b$(ただし、$a$<$b$)、$f(x)$の極大値が0となる$k$の値を$c$とする。このとき、
$a$=$\displaystyle\frac{\boxed{\ \ ケ\ \ }\left(\sqrt{\boxed{\ \ コサ\ \ }}-\boxed{\ \ シ\ \ }\right)}{\boxed{\ \ ス\ \ }}$, $b$=$\boxed{\ \ セ\ \ }$, $c$=$\boxed{\ \ ソ\ \ }$
である。座標平面において、$k$=$\boxed{\ \ セ\ \ }$のとき、$x$軸の$x$≧0の部分と$y$軸の$y$≧0 の部分と$y$=$f(x)$のグラフとで囲まれた図形の面積は$\boxed{\ \ タチツ\ \ }$である。
方程式$f(x)$=0 が異なる3つの実数解を持つための必要十分条件は$\boxed{\ \ テ\ \ }$である。
$\boxed{\ \ ア\ \ }$, $\boxed{\ \ キ\ \ }$の解答群
⓪0 ①$\frac{k}{2}$ ②$\frac{2k}{3}$ ③$k$ ④$\frac{4k}{3}$
⑤$2k$ ⑥$-\frac{k}{2}$ ⑦$-\frac{2k}{3}$ ⑧$-k$ ⑨$-2k$
$\boxed{\ \ テ\ \ }$の解答群
⓪$k$<$a$, $b$<$k$<$c$ ①$k$<$a$, $c$<$k$<$b$ ②$k$<$c$, $a$<$k$<$b$
③$a$<$k$<$b$, $c$<$k$ ④$a$<$k$<$c$, $b$<$k$ ⑤$c$<$k$<$a$, $b$<$k$
⑥$a$<$k$<$c$ ⑦$c$<$k$<$a$ ⑧$b$<$k$<$c$ ⑨$c$<$k$<$b$
この動画を見る
$\Large{\boxed{1}}$ $k$を正の実数とし、$x$の関数$f(x)$を
$f(x)$=$x^3$$-3kx^2$$+9(k^2+2k-3)$
により定める。関数$f(x)$は$x$=$\boxed{\ \ ア\ \ }$で極大値$\boxed{\ \ イ\ \ }k^2$+$\boxed{\ \ ウエ\ \ }k$-$\boxed{\ \ オカ\ \ }$をとり、
$x$=$\boxed{\ \ キ\ \ }$で極小値$-\boxed{\ \ ク\ \ }k^3$+$\boxed{\ \ イ\ \ }k^2$+$\boxed{\ \ ウエ\ \ }k$-$\boxed{\ \ オカ\ \ }$ をとる。
以下、$f(x)$の極小値が0になる$k$の値を$a$,$b$(ただし、$a$<$b$)、$f(x)$の極大値が0となる$k$の値を$c$とする。このとき、
$a$=$\displaystyle\frac{\boxed{\ \ ケ\ \ }\left(\sqrt{\boxed{\ \ コサ\ \ }}-\boxed{\ \ シ\ \ }\right)}{\boxed{\ \ ス\ \ }}$, $b$=$\boxed{\ \ セ\ \ }$, $c$=$\boxed{\ \ ソ\ \ }$
である。座標平面において、$k$=$\boxed{\ \ セ\ \ }$のとき、$x$軸の$x$≧0の部分と$y$軸の$y$≧0 の部分と$y$=$f(x)$のグラフとで囲まれた図形の面積は$\boxed{\ \ タチツ\ \ }$である。
方程式$f(x)$=0 が異なる3つの実数解を持つための必要十分条件は$\boxed{\ \ テ\ \ }$である。
$\boxed{\ \ ア\ \ }$, $\boxed{\ \ キ\ \ }$の解答群
⓪0 ①$\frac{k}{2}$ ②$\frac{2k}{3}$ ③$k$ ④$\frac{4k}{3}$
⑤$2k$ ⑥$-\frac{k}{2}$ ⑦$-\frac{2k}{3}$ ⑧$-k$ ⑨$-2k$
$\boxed{\ \ テ\ \ }$の解答群
⓪$k$<$a$, $b$<$k$<$c$ ①$k$<$a$, $c$<$k$<$b$ ②$k$<$c$, $a$<$k$<$b$
③$a$<$k$<$b$, $c$<$k$ ④$a$<$k$<$c$, $b$<$k$ ⑤$c$<$k$<$a$, $b$<$k$
⑥$a$<$k$<$c$ ⑦$c$<$k$<$a$ ⑧$b$<$k$<$c$ ⑨$c$<$k$<$b$
【数Ⅱ】微分法と積分法「面積、体積」絶対値の定積分PRIMEⅡ 551

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材:
#PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
(1) $\int_0^3 |x-1|dx$
(2) $\int_0^4 |x^2-3x|dx$
この動画を見る
次の定積分を求めよ。
(1) $\int_0^3 |x-1|dx$
(2) $\int_0^4 |x^2-3x|dx$
【数Ⅱ】式と証明:等式の証明:展開するだけの証明

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を証明せよ。$(a-b)^3+3ab(a-b)=a^3-b^3$
この動画を見る
次の等式を証明せよ。$(a-b)^3+3ab(a-b)=a^3-b^3$
大学入試問題#636「ミスなく」 東京電機大学(2020) #不定積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東京電機大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^3log(x^2+1) dx$
出典:2020年東京電機大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} x^3log(x^2+1) dx$
出典:2020年東京電機大学 入試問題
【数Ⅱ】式と証明:恒等式の証明

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式が$x$についての恒等式になるように,定数$a,b$の値を定めよ。
$\displaystyle \frac{4x+7}{(x-2)(2x+1)}=\displaystyle \frac{a}{x-2}+\displaystyle \frac{b}{2x+1}$
この動画を見る
次の等式が$x$についての恒等式になるように,定数$a,b$の値を定めよ。
$\displaystyle \frac{4x+7}{(x-2)(2x+1)}=\displaystyle \frac{a}{x-2}+\displaystyle \frac{b}{2x+1}$
【短時間でポイントチェック!!】対数の基礎〔現役講師解説、数学〕

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
①$\log_3243$
②$\log_{10}\frac{1}{1000}$
③$\log_\frac{1}{3}\sqrt27$
この動画を見る
①$\log_3243$
②$\log_{10}\frac{1}{1000}$
③$\log_\frac{1}{3}\sqrt27$
大学入試問題#635「意外と簡単」 公立諏訪東京理科大学 #不定積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
(1)$\displaystyle \int e^x\{f'(x)+f(x)\} dx$
(2)$\displaystyle \int e^x \displaystyle \frac{1+\sin\ x}{1+\cos\ x}\ dx$
出典:2023年公立諏訪東京理科大学 入試問題
この動画を見る
(1)$\displaystyle \int e^x\{f'(x)+f(x)\} dx$
(2)$\displaystyle \int e^x \displaystyle \frac{1+\sin\ x}{1+\cos\ x}\ dx$
出典:2023年公立諏訪東京理科大学 入試問題
中学生も挑戦して どっちがでかい

単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
どっちがでかい?\\
2^{266}\quad VS\quad 7^{100}
\end{eqnarray}
$
この動画を見る
$
\begin{eqnarray}
どっちがでかい?\\
2^{266}\quad VS\quad 7^{100}
\end{eqnarray}
$
大学入試問題#634「これは沼るかも」 埼玉大学(2015)定積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\cos^{n-1}\theta\sin^{n-1}\theta}{\cos^{2n}\theta+\sin^{2n}\theta}\ d\theta$
出典:2015年埼玉大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\cos^{n-1}\theta\sin^{n-1}\theta}{\cos^{2n}\theta+\sin^{2n}\theta}\ d\theta$
出典:2015年埼玉大学 入試問題
福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。
2023早稲田大学社会科学部過去問
この動画を見る
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。
2023早稲田大学社会科学部過去問
#11 鬼の定積分 By英語orドイツ語シはBかHか さん

単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \sqrt{ \displaystyle \frac{2^x-1}{2^x+1} } dx$
この動画を見る
$\displaystyle \int_{0}^{1} \sqrt{ \displaystyle \frac{2^x-1}{2^x+1} } dx$
整式の剰余

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x+4)^{12}$を$x^2+6x+12$で割った余りを求めよ.
この動画を見る
$(x+4)^{12}$を$x^2+6x+12$で割った余りを求めよ.
福田の数学〜多変数の方程式はこう扱え〜早稲田大学2023年社会科学部第2問〜3変数の不定方程式の整数解

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 定数$m$に対して$x$,$y$,$z$の方程式
$xyz$+$x$+$y$+$z$=$xy$+$yz$+$zx$+$m$ ...①
を考える。次の問いに答えよ。
(1)$m$=1のとき①式を満たす実数$x$,$y$,$z$の組を全て求めよ。
(2)$m$=5のとき①式を満たす整数$x$,$y$,$z$の組を全て求めよ。ただし、
$x$≦$y$≦$z$ とする。
(3)$xyz$=$x$+$y$+$z$ を満たす整数$x$,$y$,$z$の組を全て求めよ。ただし、
0<$x$≦$y$≦$z$ とする。
この動画を見る
$\Large{\boxed{2}}$ 定数$m$に対して$x$,$y$,$z$の方程式
$xyz$+$x$+$y$+$z$=$xy$+$yz$+$zx$+$m$ ...①
を考える。次の問いに答えよ。
(1)$m$=1のとき①式を満たす実数$x$,$y$,$z$の組を全て求めよ。
(2)$m$=5のとき①式を満たす整数$x$,$y$,$z$の組を全て求めよ。ただし、
$x$≦$y$≦$z$ とする。
(3)$xyz$=$x$+$y$+$z$ を満たす整数$x$,$y$,$z$の組を全て求めよ。ただし、
0<$x$≦$y$≦$z$ とする。
大学入試問題#633「計算力勝負」 日本医科大学(2018年) #積分方程式 僚太さんの紹介

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#日本医科大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)$:微分可能
$x \gt -1$
$f(x)=log(x+1)+\displaystyle \int_{0}^{x} f(x-t)\sin\ t\ dt$を満たす$f(x)$を求めよ
出典:2018年日本医科大学 入試問題
この動画を見る
$f(x)$:微分可能
$x \gt -1$
$f(x)=log(x+1)+\displaystyle \int_{0}^{x} f(x-t)\sin\ t\ dt$を満たす$f(x)$を求めよ
出典:2018年日本医科大学 入試問題
大学入試問題#632「微分して積分するだけ」 埼玉大学(2017) #積分方程式

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)$:微分可能
$f(x)=x^2e^{-x}+\displaystyle \int_{0}^{x} e^{t-x}f(t)dt$を満たす$f(x)$を求めよ。
出典:2017年埼玉大学 入試問題
この動画を見る
$f(x)$:微分可能
$f(x)=x^2e^{-x}+\displaystyle \int_{0}^{x} e^{t-x}f(t)dt$を満たす$f(x)$を求めよ。
出典:2017年埼玉大学 入試問題
福田の数学〜剰余類と合同式を練習だ〜早稲田大学2023年商学部第3問〜7で割り切れる条件と91で割り切れる条件

単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $n$を正の整数とする。次の設問に答えよ。
(1)$n^2$+$n$+1が7で割り切れるような$n$を小さい順に並べるとき、100番目の整数$n$を求めよ。
(2)$n^2$+$n$+1が91で割り切れるような$n$を小さい順に並べるとき、100番目の整数$n$を求めよ。
この動画を見る
$\Large{\boxed{3}}$ $n$を正の整数とする。次の設問に答えよ。
(1)$n^2$+$n$+1が7で割り切れるような$n$を小さい順に並べるとき、100番目の整数$n$を求めよ。
(2)$n^2$+$n$+1が91で割り切れるような$n$を小さい順に並べるとき、100番目の整数$n$を求めよ。
