数Ⅱ
変な指数方程式
【数学Ⅱ/微分】関数の増減(微分・増減表)
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数の増加・減少を調べよ。
(1)
$y=x^3-3x^2-9x+2$
(2)
$y=x^3-3x^2+14x-4$
この動画を見る
次の関数の増加・減少を調べよ。
(1)
$y=x^3-3x^2-9x+2$
(2)
$y=x^3-3x^2+14x-4$
【数学Ⅱ/微分】接線の方程式②
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
点$(-1,-4)$から、曲線$y=x^2-1$に引いた接線の方程式を求めよ。
この動画を見る
点$(-1,-4)$から、曲線$y=x^2-1$に引いた接線の方程式を求めよ。
【数学Ⅱ/三角関数】三角方程式②
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$のとき、次の方程式を解け。
(1)
$\tan(\theta -\displaystyle \frac{\pi}{4})=\displaystyle \frac{1}{\sqrt{ 3 }}$
(2)
$\tan(\theta -\displaystyle \frac{\pi}{6})=-1$
この動画を見る
$0 \leqq \theta \lt 2\pi$のとき、次の方程式を解け。
(1)
$\tan(\theta -\displaystyle \frac{\pi}{4})=\displaystyle \frac{1}{\sqrt{ 3 }}$
(2)
$\tan(\theta -\displaystyle \frac{\pi}{6})=-1$
【数学Ⅱ/微分】接線の方程式①
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の接線の方程式を求めよ。
(1)
曲線$y=x^3-2x^2+x+4$上の$x$座標が2である点における接線
(2)
曲線$y=x^2-3x$について、傾きが$3$である接線
この動画を見る
次の接線の方程式を求めよ。
(1)
曲線$y=x^3-2x^2+x+4$上の$x$座標が2である点における接線
(2)
曲線$y=x^2-3x$について、傾きが$3$である接線
【数学II/微分】導関数の定義
【数学Ⅱ/三角関数】三角方程式①
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$のとき、次の方程式を解け。
(1)
$\sin(\theta-\displaystyle \frac{\pi}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$
(2)
$\cos(\theta+\displaystyle \frac{\pi}{3})=\displaystyle \frac{1}{\sqrt{ 2 }}$
この動画を見る
$0 \leqq \theta \lt 2\pi$のとき、次の方程式を解け。
(1)
$\sin(\theta-\displaystyle \frac{\pi}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$
(2)
$\cos(\theta+\displaystyle \frac{\pi}{3})=\displaystyle \frac{1}{\sqrt{ 2 }}$
【数学Ⅰ/三角比】三角不等式(単位円)
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の不等式を満たす$\theta$の範囲を求めよ。
(1)
$\sin\theta \geqq \displaystyle \frac{\sqrt{ 3 }}{2}$
(2)
$2\cos\theta \gt -1$
(3)
$\sqrt{ 3 }\tan\theta \geqq -1$
この動画を見る
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の不等式を満たす$\theta$の範囲を求めよ。
(1)
$\sin\theta \geqq \displaystyle \frac{\sqrt{ 3 }}{2}$
(2)
$2\cos\theta \gt -1$
(3)
$\sqrt{ 3 }\tan\theta \geqq -1$
【数学Ⅰ/テスト対策】三角方程式
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の式を満たす$\theta$の値を求めよ。
(1)
$2\sin\theta=\sqrt{ 2 }$
(2)
$2\cos\theta=-1$
(3)
$\sqrt{ 3 }\tan\theta=1$
この動画を見る
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の式を満たす$\theta$の値を求めよ。
(1)
$2\sin\theta=\sqrt{ 2 }$
(2)
$2\cos\theta=-1$
(3)
$\sqrt{ 3 }\tan\theta=1$
【数学Ⅱ/三角関数】 三角関数の合成
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を、$r\sin(\theta+\alpha)$の形で表せ。
ただし、$r \gt 0,$ $0 \leqq \alpha \leqq 2\pi$とする。
(1)$\sqrt{ 3 }\sin\theta+\cos\theta$
(2)$\sin\theta-\cos\theta$
この動画を見る
次の式を、$r\sin(\theta+\alpha)$の形で表せ。
ただし、$r \gt 0,$ $0 \leqq \alpha \leqq 2\pi$とする。
(1)$\sqrt{ 3 }\sin\theta+\cos\theta$
(2)$\sin\theta-\cos\theta$
福田のわかった数学〜高校2年生091〜指数対数(4)指数関数の最大最小
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 指数対数(4) 指数関数の最大最小\\
最小値とそのときのxを求めよ。\\
(1)y=2^{2+x}+2^{5-x} (2)y=4^x-2^{x+2}\\
(3)y=4^x+4^{-x}-2^x-2^{-x}
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 指数対数(4) 指数関数の最大最小\\
最小値とそのときのxを求めよ。\\
(1)y=2^{2+x}+2^{5-x} (2)y=4^x-2^{x+2}\\
(3)y=4^x+4^{-x}-2^x-2^{-x}
\end{eqnarray}
【数学Ⅰ/三角比】三角比の最大・最小(二次関数)
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、$y=3-2\sin^2\theta-\cos\theta$の最大値と最小値を求めよ。
この動画を見る
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、$y=3-2\sin^2\theta-\cos\theta$の最大値と最小値を求めよ。
福田のわかった数学〜高校2年生090〜指数対数(3)指数法則を使う計算(3)
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 指数対数(3) 指数法則(3)\\
(1)a^{2x}=5のとき\frac{a^x-a^{-x}}{a^x+a^{-x}}, \frac{a^{3x}-a^{-3x}}{a^{3x}+a^{-3x}}を求めよ。\\
(2)a^{3x}-a^{-3x}=14のときa^x-a^{-x}, a^x+a^{-x}を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 指数対数(3) 指数法則(3)\\
(1)a^{2x}=5のとき\frac{a^x-a^{-x}}{a^x+a^{-x}}, \frac{a^{3x}-a^{-3x}}{a^{3x}+a^{-3x}}を求めよ。\\
(2)a^{3x}-a^{-3x}=14のときa^x-a^{-x}, a^x+a^{-x}を求めよ。
\end{eqnarray}
【数Ⅱ】解と係数の関係と対称式 α²+β²の値【複数の方法で理解を深める】
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ x^2+2x+5=0の解を\alpha,\betaとする.\alpha^2+\beta^2を求めよ.$
この動画を見る
$ x^2+2x+5=0の解を\alpha,\betaとする.\alpha^2+\beta^2を求めよ.$
福田のわかった数学〜高校3年生理系107〜変化率(2)水の問題(1)
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 変化率(2) 水の問題(1)\\
y=x^2 をy軸の周りに回転させてできる容器に、\\
毎秒1cm^3の割合で水を入れる。水面の半径が\\
3cmになったときの水面の上昇速度と水面の面積の増加速度を求めよ。\\
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 変化率(2) 水の問題(1)\\
y=x^2 をy軸の周りに回転させてできる容器に、\\
毎秒1cm^3の割合で水を入れる。水面の半径が\\
3cmになったときの水面の上昇速度と水面の面積の増加速度を求めよ。\\
\end{eqnarray}
福田のわかった数学〜高校2年生089〜指数対数(2)指数法則を使う計算(2)
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 指数対数(2) 指数法則(2)\\
(1)\sqrt[3]{54}×\sqrt7×\sqrt[4]{14}×\frac{1}{\sqrt[4]{490}}×\sqrt[4]{10}×\frac{1}{\sqrt[4]7}×\frac{1}{\sqrt[12]2}\\
(2)\sqrt[3]{54}+\frac{3}{2}\sqrt[6]4+\sqrt[3]{-\frac{1}{4}}\\
\\
\frac{1}{\sqrt[3]2+1}の分母を有理化せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 指数対数(2) 指数法則(2)\\
(1)\sqrt[3]{54}×\sqrt7×\sqrt[4]{14}×\frac{1}{\sqrt[4]{490}}×\sqrt[4]{10}×\frac{1}{\sqrt[4]7}×\frac{1}{\sqrt[12]2}\\
(2)\sqrt[3]{54}+\frac{3}{2}\sqrt[6]4+\sqrt[3]{-\frac{1}{4}}\\
\\
\frac{1}{\sqrt[3]2+1}の分母を有理化せよ。
\end{eqnarray}
分数式
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\neq 0$であり,$x$は実数であるとする.
$\dfrac{x}{x^2+x+1}=a$
$\dfrac{x^2}{x^4+x^2+1}$の値を$a$で表せ.
この動画を見る
$x\neq 0$であり,$x$は実数であるとする.
$\dfrac{x}{x^2+x+1}=a$
$\dfrac{x^2}{x^4+x^2+1}$の値を$a$で表せ.
分数の中に分数 慶應義塾高校
単元:
#数学(中学生)#数Ⅱ#式と証明#整式の除法・分数式・二項定理#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{\frac{1}{3} - \frac{2}{5} }
{\frac{1}{3} - \frac{2}{5} + \frac{3}{7}}$
慶應義塾高等学校
この動画を見る
$\frac{\frac{1}{3} - \frac{2}{5} }
{\frac{1}{3} - \frac{2}{5} + \frac{3}{7}}$
慶應義塾高等学校
福田のわかった数学〜高校3年生理系106〜変化率(1)
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 変化率(1)\\
半径が毎秒1cmずつ増加する\\
球がある。半径が3cmとなる\\
瞬間の体積の増加する速さを求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 変化率(1)\\
半径が毎秒1cmずつ増加する\\
球がある。半径が3cmとなる\\
瞬間の体積の増加する速さを求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生088〜指数対数(1)指数法則を使う計算(1)
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 指数対数(1) 指数法則(1)\\
\\
\frac{(x^{\frac{p}{a}}y^{-\frac{b}{q}}z^{\frac{2}{aq}})^{aq}}{(x^{-\frac{a}{p}}y^{\frac{q}{b}})^{bp}}÷\left\{(\sqrt{\frac{x}{y}})^b\sqrt[a]z\right\}^{2a}\\
を計算せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 指数対数(1) 指数法則(1)\\
\\
\frac{(x^{\frac{p}{a}}y^{-\frac{b}{q}}z^{\frac{2}{aq}})^{aq}}{(x^{-\frac{a}{p}}y^{\frac{q}{b}})^{bp}}÷\left\{(\sqrt{\frac{x}{y}})^b\sqrt[a]z\right\}^{2a}\\
を計算せよ。
\end{eqnarray}
気を付けないと間違える計算問題
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
この動画を見る
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
【数Ⅱ】複素数の計算【簡単なようで間違えやすい計算】
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ iと等しいものを2つ選べ.
\dfrac{1}{i^3},\sqrt{-\dfrac{1}{2}}\sqrt{-2}i,\dfrac{1}{\sqrt{-1}},\dfrac{-3+2i}{2+3i}$
この動画を見る
$ iと等しいものを2つ選べ.
\dfrac{1}{i^3},\sqrt{-\dfrac{1}{2}}\sqrt{-2}i,\dfrac{1}{\sqrt{-1}},\dfrac{-3+2i}{2+3i}$
【不等式はこれを抑えよう!】不等式の証明での注意点をすべてまとめました!〔数学 高校数学〕
福田のわかった数学〜高校2年生087〜三角関数(26)2変数関数の最大最小
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(26) 2変数関数の最大最小\\
\alpha,\betaは0以上2\piよりこの範囲を動く。\\
\sqrt3\sin\beta-\cos\alpha\cos\beta\\
の最大値最小値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(26) 2変数関数の最大最小\\
\alpha,\betaは0以上2\piよりこの範囲を動く。\\
\sqrt3\sin\beta-\cos\alpha\cos\beta\\
の最大値最小値を求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生086〜三角関数(25)重要な変形(3)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(25) 重要な変形(3)\\
外接円の半径が1の\triangle ABCがある。\\
この三角形の内接円の半径は\frac{1}{2}以下であることを示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(25) 重要な変形(3)\\
外接円の半径が1の\triangle ABCがある。\\
この三角形の内接円の半径は\frac{1}{2}以下であることを示せ。
\end{eqnarray}
対数不等式
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
${\log_{10}(-x)}^2-\log_{10}x^2 \gt 3$
この動画を見る
これを解け.
${\log_{10}(-x)}^2-\log_{10}x^2 \gt 3$
福田のわかった数学〜高校2年生085〜三角関数(24)重要な変形(2)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(24) 重要な変形(2)\\
\triangle ABCにおいて\\
\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\\
を証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(24) 重要な変形(2)\\
\triangle ABCにおいて\\
\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\\
を証明せよ。
\end{eqnarray}
どう解くか?だ。
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$0.2(0.1x -0.8) = \frac{4x+7}{50}$
法政大学
この動画を見る
方程式を解け
$0.2(0.1x -0.8) = \frac{4x+7}{50}$
法政大学