数列
数列
数学「大学入試良問集」【13−10 群数列とその戦略】を宇宙一わかりやすく

単元:
#数列#数学(高校生)#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$1,1,3,1,3,5,1,3,5,7,1,3,5,7,9,1,・・・$において、次の問いに答えよ。
ただし、$k,m,n$は自然数とする。
(1)$k+1$回目に現れる1は第何項か。
(2)$m$回目に現れる17は第何項か。
(3)初項から$k+1$回目の1までの項の和を求めよ。
(4)初項から第$n$項までの和を$S_n$とするとき、$S_n \gt 1300$となる最小の$n$を求めよ。
この動画を見る
数列$1,1,3,1,3,5,1,3,5,7,1,3,5,7,9,1,・・・$において、次の問いに答えよ。
ただし、$k,m,n$は自然数とする。
(1)$k+1$回目に現れる1は第何項か。
(2)$m$回目に現れる17は第何項か。
(3)初項から$k+1$回目の1までの項の和を求めよ。
(4)初項から第$n$項までの和を$S_n$とするとき、$S_n \gt 1300$となる最小の$n$を求めよ。
この求め方知ってた?

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
図のように1辺1cmの正方形を並べて図形を作る。このときn番目図形の周の長さを求めよ。
※図は動画内参照
この動画を見る
図のように1辺1cmの正方形を並べて図形を作る。このときn番目図形の周の長さを求めよ。
※図は動画内参照
福田のおもしろ数学316〜x^n+x^{-n}が整数である証明と倍数

単元:
#数列#数学的帰納法#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
2より大きい整数$t$に対して$t=x+x^{-1}$を満たす実数$x$を考える。$t_n = x+x^{-n}$とするとき$t_n$は常に整数であることを示せ。また、$t_n$が$t$の倍数となるような正の整数$n$をすべて求めよ。
この動画を見る
2より大きい整数$t$に対して$t=x+x^{-1}$を満たす実数$x$を考える。$t_n = x+x^{-n}$とするとき$t_n$は常に整数であることを示せ。また、$t_n$が$t$の倍数となるような正の整数$n$をすべて求めよ。
福田の数学〜早稲田大学2024社会科学部第3問〜集合と数列

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$n$を$n \geqq 3$である自然数とする。相異なる$n$個の正の数を小さい順に並べた集合$S=${ $a_{ 1 },a_{ 2 }・・・,a_{ n } $}を考える。$a_{ 1 }=k$とするとき、次の問いに答えよ。
(1)$a_{ i }-a_{ 1 }$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ 2 }$を求めよ。
(2)(1)のとき、$a_{ n }$を$n$の式で表せ。
(3)$\frac{a_{ i }}{a_{ 1 }}$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ n }$を$n$の式で表せ。
この動画を見る
$n$を$n \geqq 3$である自然数とする。相異なる$n$個の正の数を小さい順に並べた集合$S=${ $a_{ 1 },a_{ 2 }・・・,a_{ n } $}を考える。$a_{ 1 }=k$とするとき、次の問いに答えよ。
(1)$a_{ i }-a_{ 1 }$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ 2 }$を求めよ。
(2)(1)のとき、$a_{ n }$を$n$の式で表せ。
(3)$\frac{a_{ i }}{a_{ 1 }}$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ n }$を$n$の式で表せ。
福田のおもしろ数学311〜n個の積の和を最大にする方法

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$n$個の実数 $a_1\leqq a_2\leqq \cdots \leqq a_n$と$n$個の実数を適当に並べたものを$b_1, b_2, \cdots ,b_n $ として、$s = a_1b_1+a_2b_2+\cdots + a_nb_n $を最大にするには$b_1 \leqq b_2 \leqq \cdots \leqq b_n $となるように並べたときである。これを証明して下さい。(ただし、$n\geqq 2$とする)
この動画を見る
$n$個の実数 $a_1\leqq a_2\leqq \cdots \leqq a_n$と$n$個の実数を適当に並べたものを$b_1, b_2, \cdots ,b_n $ として、$s = a_1b_1+a_2b_2+\cdots + a_nb_n $を最大にするには$b_1 \leqq b_2 \leqq \cdots \leqq b_n $となるように並べたときである。これを証明して下さい。(ただし、$n\geqq 2$とする)
福田のおもしろ数学309〜自然数から自然数への関数f(n)に関する関数方程式

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数列#数学的帰納法#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$$自然数を自然数へ写す関数f(n)が次を満たす。$$
$$\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Rightarrow \frac{1}{f(a)}+\frac{1}{f(b)}=\frac{1}{f(c)}$$
$$このような関数f(n)をすべて求めて下さい。$$
この動画を見る
$$自然数を自然数へ写す関数f(n)が次を満たす。$$
$$\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Rightarrow \frac{1}{f(a)}+\frac{1}{f(b)}=\frac{1}{f(c)}$$
$$このような関数f(n)をすべて求めて下さい。$$
福田の数学〜早稲田大学2024商学部第1問(3)〜漸化式

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$C$を$1$でない正の実数とする。正の実数の数列$\{a_n\}$が次の条件を満たしている。
$a_1=C,$${a_n}^{n+1}{a_{n+1}}^n=C^{-(2n+1)}$
このとき、一般項$a_n$を$C$を用いて表せ。
この動画を見る
$C$を$1$でない正の実数とする。正の実数の数列$\{a_n\}$が次の条件を満たしている。
$a_1=C,$${a_n}^{n+1}{a_{n+1}}^n=C^{-(2n+1)}$
このとき、一般項$a_n$を$C$を用いて表せ。
福田の数学〜早稲田大学2024商学部第1問(2)〜不等式で決定される自然数の列

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$n$を$2$以上の整数とし、$a_1,a_2,a_3,・・・,a_n$を正の整数とする。
$a_1=1,{a_{i+3}}^3\lt 27{a_i}^4(i=1,2,3,・・・,n-1)$
$\displaystyle \sum_{i=1}^{n-1}\frac{a_i}{a_{i+1}}=\frac{a_1}{a_{2}}+\frac{a_2}{a_{3}}+\frac{a_3}{a_{4}}+・・・+\frac{a_{n-1}}{a_{n}}\lt 1$
であるとき、$a_n$のとりうる値の最大値は?
この動画を見る
$n$を$2$以上の整数とし、$a_1,a_2,a_3,・・・,a_n$を正の整数とする。
$a_1=1,{a_{i+3}}^3\lt 27{a_i}^4(i=1,2,3,・・・,n-1)$
$\displaystyle \sum_{i=1}^{n-1}\frac{a_i}{a_{i+1}}=\frac{a_1}{a_{2}}+\frac{a_2}{a_{3}}+\frac{a_3}{a_{4}}+・・・+\frac{a_{n-1}}{a_{n}}\lt 1$
であるとき、$a_n$のとりうる値の最大値は?
福田のおもしろ数学295〜与えられた不等式を満たす数列の1との大小関係

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
どの項も正である数列$\{a_n\}$について
$(a_{n+1})^2+a_na_{n+2}\leqq a_n+a_{n+2}$
が成り立つとき、
$a_{2024}\leqq 1$を示せ。
この動画を見る
どの項も正である数列$\{a_n\}$について
$(a_{n+1})^2+a_na_{n+2}\leqq a_n+a_{n+2}$
が成り立つとき、
$a_{2024}\leqq 1$を示せ。
福田の数学〜慶應義塾大学2024環境情報学部第2問〜2べき乗表現の個数

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$b_k$を正の整数、$b_{k-1},\cdots,b_1,b_0$を負でない整数とする($k$は負でない整数であり、$k=0$のときは正の整数$b_0$のみを考える)。正の整数$n$に対して、$b_k,b_{k-1},\cdots,b_1,b_0$が$\ \ \ \ $
$\displaystyle 2^kb_k+2^{k-1}b_{k-1}+\cdots+2^2b_2+2b_1+b_0=\sum_{i=0}^k2^ib_i=n\ \\ $を満たすとき、$\langle b_k,b_{k-1},\cdots,b_1,b_0 \rangle$を$n$の2べき乗表現と呼ぶことにする。これは2進法による数の表現と似ているが、2進法の場合とは異なり、$b_i\ (i=0,1,\cdots,k)$は2以上の値も取りうる。そのため$n\geqq 2$において、$n$の2べき乗表現は1通りではない。$\\$
(1)$\ n=3$の2べき乗表現は$\langle 3 \rangle$と$\langle ア, イ\rangle$の2通りである。$\\ $(2)$\ \langle 3,2,1 \rangle$は$n=(ウエ)$の2べき乗表現である。$\\ $(3) $\ m$を正の整数とするとき、1から$m$までの整数を順に並べた$\langle 1,2,\cdots ,m \rangle$は$\ \ 2^{(m+オカ)}+(キク)m+(ケコ)\ $の2べき乗表現である。$\\ $ (4)$\ n$の2べき乗表現の個数を$a_n$とすると、$\ a_4=(サシ),\ a_5=(スセ),\ a_6=(ソタ),\cdots ,a_{10}=(チツ),\cdots , a_{20}=(テト)$である。
この動画を見る
$b_k$を正の整数、$b_{k-1},\cdots,b_1,b_0$を負でない整数とする($k$は負でない整数であり、$k=0$のときは正の整数$b_0$のみを考える)。正の整数$n$に対して、$b_k,b_{k-1},\cdots,b_1,b_0$が$\ \ \ \ $
$\displaystyle 2^kb_k+2^{k-1}b_{k-1}+\cdots+2^2b_2+2b_1+b_0=\sum_{i=0}^k2^ib_i=n\ \\ $を満たすとき、$\langle b_k,b_{k-1},\cdots,b_1,b_0 \rangle$を$n$の2べき乗表現と呼ぶことにする。これは2進法による数の表現と似ているが、2進法の場合とは異なり、$b_i\ (i=0,1,\cdots,k)$は2以上の値も取りうる。そのため$n\geqq 2$において、$n$の2べき乗表現は1通りではない。$\\$
(1)$\ n=3$の2べき乗表現は$\langle 3 \rangle$と$\langle ア, イ\rangle$の2通りである。$\\ $(2)$\ \langle 3,2,1 \rangle$は$n=(ウエ)$の2べき乗表現である。$\\ $(3) $\ m$を正の整数とするとき、1から$m$までの整数を順に並べた$\langle 1,2,\cdots ,m \rangle$は$\ \ 2^{(m+オカ)}+(キク)m+(ケコ)\ $の2べき乗表現である。$\\ $ (4)$\ n$の2べき乗表現の個数を$a_n$とすると、$\ a_4=(サシ),\ a_5=(スセ),\ a_6=(ソタ),\cdots ,a_{10}=(チツ),\cdots , a_{20}=(テト)$である。
福田のおもしろ数学290〜3項間漸化式の第2024項を求める

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$x_1=1,x_2=2,x_{n+2}$ は $(x_{n+1}+1)(x_n+1)$ の一の位と定義する。 $x_{2024}$ を求めよ。
この動画を見る
$x_1=1,x_2=2,x_{n+2}$ は $(x_{n+1}+1)(x_n+1)$ の一の位と定義する。 $x_{2024}$ を求めよ。
福田のおもしろ数学287〜4項からなる数列を求める

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数B
指導講師:
福田次郎
問題文全文(内容文):
増加する4つの項からなる正の整数の列がある。最初の3項は等差数列、最後の3項は等比数列をなす。最初の項と最後の項の差は30である。このとき、この4項の総和を求めよ。
この動画を見る
増加する4つの項からなる正の整数の列がある。最初の3項は等差数列、最後の3項は等比数列をなす。最初の項と最後の項の差は30である。このとき、この4項の総和を求めよ。
福田のおもしろ数学287〜4項からなる数列を求める
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
増加する4つの項からなる正の整数の列がある。
最初の3項は等差数列、最後の3項は等比数列をなす。
最初の項と最後の項の差は $30$。
この4つの項の総和を求めよ。
この動画を見る
増加する4つの項からなる正の整数の列がある。
最初の3項は等差数列、最後の3項は等比数列をなす。
最初の項と最後の項の差は $30$。
この4つの項の総和を求めよ。
福田のおもしろ数学284〜(1+1/n)^nが増加数列である証明

単元:
#数列#漸化式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数列 $ \large{ a }\scriptsize{ n } = \left(1+\frac{1}{n} \right)^n $ は増加することを証明せよ。
この動画を見る
数列 $ \large{ a }\scriptsize{ n } = \left(1+\frac{1}{n} \right)^n $ は増加することを証明せよ。
数がでかすぎる!1の位の数字をどう求める?【東京大学】【数学 入試問題】

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(10^210)/(10^10+3)の整数部分のけた数と、1の位の数字を求めよ。ただし、3^21=10460353203を用いてよい。
この動画を見る
(10^210)/(10^10+3)の整数部分のけた数と、1の位の数字を求めよ。ただし、3^21=10460353203を用いてよい。
福田のおもしろ数学282〜ガウス記号で表された式の和を求める

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{1000} [\frac{2^n}{3} ]$を求めて下さい。$[x]$は$x$をこえない最大の整数を表す。
この動画を見る
$\displaystyle \sum_{n=1}^{1000} [\frac{2^n}{3} ]$を求めて下さい。$[x]$は$x$をこえない最大の整数を表す。
福田のおもしろ数学279〜関数方程式から関数の値を計算する問題

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
任意の実数$x$に対して$f(x)+f(x-1)=x^2$が成り立ち、$f(19)=94$のとき$f(94)$の値は?
この動画を見る
任意の実数$x$に対して$f(x)+f(x-1)=x^2$が成り立ち、$f(19)=94$のとき$f(94)$の値は?
福田のおもしろ数学278〜等差数列の和に関する問題

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$a_1,a_2,a_3,\cdots$は公差$1$の等差数列であり、$a_1+a_2+a_3+\cdots+a_{98}=137$を満たす。
このとき、$a_2+a_4+a_6+\cdots+a_{98}$の値を求めよ。
この動画を見る
$a_1,a_2,a_3,\cdots$は公差$1$の等差数列であり、$a_1+a_2+a_3+\cdots+a_{98}=137$を満たす。
このとき、$a_2+a_4+a_6+\cdots+a_{98}$の値を求めよ。
アンパンマンは今元気何倍ですか?

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
アンパンマンは今現在元気何倍になっていますか
この動画を見る
アンパンマンは今現在元気何倍になっていますか
福田の数学〜上智大学2024理工学部第3問〜円の内部を反射しながら進む点の通過範囲

単元:
#大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
点$O$を中心とし半径が$1$の円形のビリヤード台がある。台の縁の点$P_1$に大きさが無視できる球$Q$を置き、半径$P_1O$とのなす角が$\frac{\pi}{8}$の方向へ球$Q$を打ち出す。
球$Q$は、ビリヤード台の縁に当たると、図のように入射角と反射角が等しくなるように反射し、一度打ち出されたら止まらないものとする。
$i=1,2,3,\cdots$に対し、点$P_i$の次に球$Q$が縁に当たる点を$P_{i+1}$とし、$\overrightarrow{OP_i}=\overrightarrow{p_i}$とする。
(1)$\overrightarrow{p_3}=\fbox{あ}\overrightarrow{p_1}+\fbox{い}\overrightarrow{p_2},\overrightarrow{p_4}=\fbox{う}\overrightarrow{p_1}+\fbox{え}\overrightarrow{p_2}$である。
(2)$P_i=P_1となるiのうち、 i\geqq 2で最小のものは\fbox{ソ}である。$
(3)$線分P_1P_2とP_3P_4 との交点をA、線分P_1P_2とP_6P_7との交点をBとすると$
$\overrightarrow{OA}=\fbox{お}\overrightarrow{p_1}+\fbox{か}\overrightarrow{p_2},\overrightarrow{OB}=\fbox{き}\overrightarrow{p_1}+\fbox{く}\overrightarrow{p_2}$である。
(4)球$Q$が点$P_1$から打ち出されてから初めて再び点$P_1$に到達するまでに、中心$O$と球$Q$とを結ぶ線分$OQ$がちょうど2回通過する領域の面積は$\fbox{タ}+\fbox{チ}\sqrt{2}$である。
この動画を見る
点$O$を中心とし半径が$1$の円形のビリヤード台がある。台の縁の点$P_1$に大きさが無視できる球$Q$を置き、半径$P_1O$とのなす角が$\frac{\pi}{8}$の方向へ球$Q$を打ち出す。
球$Q$は、ビリヤード台の縁に当たると、図のように入射角と反射角が等しくなるように反射し、一度打ち出されたら止まらないものとする。
$i=1,2,3,\cdots$に対し、点$P_i$の次に球$Q$が縁に当たる点を$P_{i+1}$とし、$\overrightarrow{OP_i}=\overrightarrow{p_i}$とする。
(1)$\overrightarrow{p_3}=\fbox{あ}\overrightarrow{p_1}+\fbox{い}\overrightarrow{p_2},\overrightarrow{p_4}=\fbox{う}\overrightarrow{p_1}+\fbox{え}\overrightarrow{p_2}$である。
(2)$P_i=P_1となるiのうち、 i\geqq 2で最小のものは\fbox{ソ}である。$
(3)$線分P_1P_2とP_3P_4 との交点をA、線分P_1P_2とP_6P_7との交点をBとすると$
$\overrightarrow{OA}=\fbox{お}\overrightarrow{p_1}+\fbox{か}\overrightarrow{p_2},\overrightarrow{OB}=\fbox{き}\overrightarrow{p_1}+\fbox{く}\overrightarrow{p_2}$である。
(4)球$Q$が点$P_1$から打ち出されてから初めて再び点$P_1$に到達するまでに、中心$O$と球$Q$とを結ぶ線分$OQ$がちょうど2回通過する領域の面積は$\fbox{タ}+\fbox{チ}\sqrt{2}$である。
福田の数学〜上智大学2024理工学部第2問〜漸化式と約数倍数の証明

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
次の条件によって定められる数列 ${a_n}$ を考える。
$a_1=2, \, a_{n+1}=a_n^2+a_n+1$
$(1)$ $a_n-2$ は $5$ で割り切れることを証明せよ。
$(2)$ $a_n^2+1$ は $5^n$ で割り切れることを証明せよ。
この動画を見る
次の条件によって定められる数列 ${a_n}$ を考える。
$a_1=2, \, a_{n+1}=a_n^2+a_n+1$
$(1)$ $a_n-2$ は $5$ で割り切れることを証明せよ。
$(2)$ $a_n^2+1$ は $5^n$ で割り切れることを証明せよ。
福田の数学〜上智大学2024TEAP利用型理系第4問〜漸化式と証明

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
次の漸化式 $(\mathrm{A})$ を満たす数列 $\{ a_n\}$ を考える。
$(\mathrm{A}):$$a_{n+2}=na_{n+1}-a_n$$ \quad (n=1.2.3.\cdots)$
(1) $(\mathrm{A})$ を満たす数列を $1$つあげよ。
(2) $2$ つの数列 $\{ a_n\}$ と $\{ b_n\}$ が $(\mathrm{A})$ を満たすとする。どんな実数 $x,y$ に対しても数列 $\{ xa_n + yb_n \}$ が $(\mathrm{A})$ を満たすことを証明せよ。
この動画を見る
次の漸化式 $(\mathrm{A})$ を満たす数列 $\{ a_n\}$ を考える。
$(\mathrm{A}):$$a_{n+2}=na_{n+1}-a_n$$ \quad (n=1.2.3.\cdots)$
(1) $(\mathrm{A})$ を満たす数列を $1$つあげよ。
(2) $2$ つの数列 $\{ a_n\}$ と $\{ b_n\}$ が $(\mathrm{A})$ を満たすとする。どんな実数 $x,y$ に対しても数列 $\{ xa_n + yb_n \}$ が $(\mathrm{A})$ を満たすことを証明せよ。
福田のおもしろ数学267〜複雑な漸化式と特殊な数学的帰納法

単元:
#数列#漸化式#数学的帰納法#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$a_0,a_1,a_2,\cdots$が$a_1=1,a_{m+n}=\dfrac12(a_{2m}+a_{2n})~~(m\geqq n)$で定義されている。$a_{2024}$を求めよ。($m,n$は負では無い整数)
この動画を見る
$a_0,a_1,a_2,\cdots$が$a_1=1,a_{m+n}=\dfrac12(a_{2m}+a_{2n})~~(m\geqq n)$で定義されている。$a_{2024}$を求めよ。($m,n$は負では無い整数)
霊感強い系の受験者は、山勘でいける 関西医科大学2024 大学入試問題#933

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#関西医科大学
指導講師:
ますただ
問題文全文(内容文):
数列$\{an\}$を
$a_1=2,a_{n+1}=S_n-n(n-4)$
$(n=1,2,3・・・)$で定めるとき,$a_n$と$S_n$を
それぞれ$n$の式で表せ.
2024関西医科大学過去問題
この動画を見る
数列$\{an\}$を
$a_1=2,a_{n+1}=S_n-n(n-4)$
$(n=1,2,3・・・)$で定めるとき,$a_n$と$S_n$を
それぞれ$n$の式で表せ.
2024関西医科大学過去問題
福田の数学〜青山学院大学2024理工学部第4問〜3項間漸化式の解法

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
初項が $1$、第10項が $3$ である数列 $\{a_n\}$ が
\begin{equation*}
a_{n+2}-3a_{n+1}+2a_n+1=0 \quad (n=1,2,3,\ldots)
\end{equation*}
を満たしている。$b_n=a_{n+1}-a_n \ (n=1,2,3,\ldots)$ とおくとき、以下の問いに答えよ。
$(1)$ $b_{n+1}$ を $b_n$ を用いて表せ。
$(2)$ $b_n$ を $n$ と $b_1$ を用いて表せ。
$(3)$ $b_1$ を求めよ。
$(4)$ 数列 $\{a_n\}$ の一般項を求めよ。
この動画を見る
初項が $1$、第10項が $3$ である数列 $\{a_n\}$ が
\begin{equation*}
a_{n+2}-3a_{n+1}+2a_n+1=0 \quad (n=1,2,3,\ldots)
\end{equation*}
を満たしている。$b_n=a_{n+1}-a_n \ (n=1,2,3,\ldots)$ とおくとき、以下の問いに答えよ。
$(1)$ $b_{n+1}$ を $b_n$ を用いて表せ。
$(2)$ $b_n$ を $n$ と $b_1$ を用いて表せ。
$(3)$ $b_1$ を求めよ。
$(4)$ 数列 $\{a_n\}$ の一般項を求めよ。
福田のおもしろ数学252〜平方数であることの証明

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$49,4489,444889,…,444…48…89,…$はすべて平方数である。証明せよ。
この動画を見る
$49,4489,444889,…,444…48…89,…$はすべて平方数である。証明せよ。
大学入試問題#923「帰納法で解いても良いのかな」

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$a_1=1,$ $a_n \neq 0$
$a_n=3(\sqrt{ S_n }-\sqrt{ S_{n-1} }),2 \leq n$
1.$a_2$を求めよ。
2.$\sqrt{ S_n }$を求めよ。
3.$a_n$を求めよ。
出典:1999年 千葉大学
この動画を見る
$a_1=1,$ $a_n \neq 0$
$a_n=3(\sqrt{ S_n }-\sqrt{ S_{n-1} }),2 \leq n$
1.$a_2$を求めよ。
2.$\sqrt{ S_n }$を求めよ。
3.$a_n$を求めよ。
出典:1999年 千葉大学
福田の数学〜明治大学2024全学部統一IⅡAB第3問〜変わった規則の数列と点列と面積

単元:
#大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
整数からなる数列$\{a_n\}~(n=1,2,3,\cdots)$を次の規則1、規則2により定める。
(規則1)$a_1=0,a_2=1$である。
(規則2)$k=1,2,3,\cdots$について、初項から第$2^k$項までの値のそれぞれに$1$を加え、それらすべてを逆の順序にしたものが第$(2^k+1)$項から第$2^{k+1}$項までの値と定める。
例えば、初項と第2項までのそれぞれに$1$を加えて順序を逆にすると$2,1$を得る。これより、初項から第4項までは$0,1,2,1$となる。同様に、これらのそれぞれに$1$を加えて順序を逆にすると$2,3,2,1$となる。これより、初項から第8項までは$0,1,2,1,2,3,2,1$となる。
(1) 以上の規則により得られる数列$\{a_n\}$において、$a_{10}=\boxed{ア}$であり、$a_{16}=\boxed{イ}$である。また第$2^k$項$(k=5,6,7,\cdots)$の値は$\boxed{ウ}$である。
(2) $a_{518}$を求めたい。上記の規則2によれば、$1 \leqq i \leqq 2^k$を満たす$i$に対して$a_1$に$1$を加えた数と第$\boxed{エ}$項が等しいと定めている。実際に、$2^b < 518 < 2^{b+1}$を満たすような整数$b$は$\boxed{オ}$であることに注意すれば、$a_{518}=\boxed{カ}$である。
エの解答群
⓪ $2^k+i-1$ ① $2^k+i$ ② $2^k+i+1$ ③$2^k+2i$ ④ $2^k+2i+1$
⑤ $2^k-i-1$ ⑥ $2^{k+1}-i$ ⑦ $2^{k+1}-i+1$ ⑧ $2^{k+1}-2i-1$ ⑨ $2^{k+1}-2i$
(3) 点$\textrm{P}_k (k=1,2,3,\cdots)$を次のように定める。
数列$\{a_n\}$の初項から第$2^k$項に着目し、$a_n$を4で割った余りにしたがって、ベクトル$\vec{e_n}$を
\begin{eqnarray}
\vec{e_n}
=
\begin{cases}
(1,0) & a_nが4の倍数のとき \\
(0,1) & a_nを4で割った余りが1のとき\\
(-1,0) & a_nを4で割った余りが2のとき\\
(0,-1) & a_nを4で割った余りが3のとき
\end{cases}
\end{eqnarray}
によって定め、点$\textrm{P}_1$の位置ベクトルを$\overrightarrow{\textrm{OP}_1}=\vec{e_1}+\vec{e_2}$とし、点$\textrm{P}_k (k=2,3,4,\cdots)$の位置ベクトルを$\overrightarrow{\textrm{OP}_k}=\vec{e_1}+\vec{e_2}+\vec{e_3}+\cdots+\vec{e_{2^k}}$とする。たとえば、$\overrightarrow{\textrm{OP}_1}=(1,0)+(0,1)+(-1,0)+(0,1)=(0,2)$である。$\{a_n\}$を定める規則に注目すると、$|\overrightarrow{\textrm{OP}_{k+1}}|$は$|\overrightarrow{\textrm{OP}_{k}}|$の$\boxed{キ}$倍であり、$\angle{\textrm{P}_k\textrm{OP}_{k+1}}=\boxed{ク}$である。このことから$\overrightarrow{\textrm{OP}_{99}}$は$(\boxed{ケ},\boxed{コ})$である。
キの解答群
⓪ $\dfrac18$ ① $\dfrac14$ ② $\dfrac12$ ③ $\dfrac{\sqrt{2}}2$ ④ $1$
⑤ $\sqrt2$ ⑥ $2$ ⑦ $2\sqrt2$ ⑧ $4$ ⑨ $8$
クの解答群
⓪ $15^{\circ}$ ① $30^{\circ}$ ② $45^{\circ}$ ③ $60^{\circ}$ ④ $75^{\circ}$
⑤ $90^{\circ}$ ⑥ $105^{\circ}$ ⑦ $120^{\circ}$ ⑧ $135^{\circ}$ ⑨ $150^{\circ}$
ケ、コの解答群
⓪ $-2^{99}$ ① $-2^{98}$ ② $-2^{49}$ ③ $-2^{48}$ ④ $0$
⑤ $1$ ⑥ $2^{48}$ ⑦ $2^{49}$ ⑧ $2^{98}$ ⑨ $2^{99}$
この動画を見る
整数からなる数列$\{a_n\}~(n=1,2,3,\cdots)$を次の規則1、規則2により定める。
(規則1)$a_1=0,a_2=1$である。
(規則2)$k=1,2,3,\cdots$について、初項から第$2^k$項までの値のそれぞれに$1$を加え、それらすべてを逆の順序にしたものが第$(2^k+1)$項から第$2^{k+1}$項までの値と定める。
例えば、初項と第2項までのそれぞれに$1$を加えて順序を逆にすると$2,1$を得る。これより、初項から第4項までは$0,1,2,1$となる。同様に、これらのそれぞれに$1$を加えて順序を逆にすると$2,3,2,1$となる。これより、初項から第8項までは$0,1,2,1,2,3,2,1$となる。
(1) 以上の規則により得られる数列$\{a_n\}$において、$a_{10}=\boxed{ア}$であり、$a_{16}=\boxed{イ}$である。また第$2^k$項$(k=5,6,7,\cdots)$の値は$\boxed{ウ}$である。
(2) $a_{518}$を求めたい。上記の規則2によれば、$1 \leqq i \leqq 2^k$を満たす$i$に対して$a_1$に$1$を加えた数と第$\boxed{エ}$項が等しいと定めている。実際に、$2^b < 518 < 2^{b+1}$を満たすような整数$b$は$\boxed{オ}$であることに注意すれば、$a_{518}=\boxed{カ}$である。
エの解答群
⓪ $2^k+i-1$ ① $2^k+i$ ② $2^k+i+1$ ③$2^k+2i$ ④ $2^k+2i+1$
⑤ $2^k-i-1$ ⑥ $2^{k+1}-i$ ⑦ $2^{k+1}-i+1$ ⑧ $2^{k+1}-2i-1$ ⑨ $2^{k+1}-2i$
(3) 点$\textrm{P}_k (k=1,2,3,\cdots)$を次のように定める。
数列$\{a_n\}$の初項から第$2^k$項に着目し、$a_n$を4で割った余りにしたがって、ベクトル$\vec{e_n}$を
\begin{eqnarray}
\vec{e_n}
=
\begin{cases}
(1,0) & a_nが4の倍数のとき \\
(0,1) & a_nを4で割った余りが1のとき\\
(-1,0) & a_nを4で割った余りが2のとき\\
(0,-1) & a_nを4で割った余りが3のとき
\end{cases}
\end{eqnarray}
によって定め、点$\textrm{P}_1$の位置ベクトルを$\overrightarrow{\textrm{OP}_1}=\vec{e_1}+\vec{e_2}$とし、点$\textrm{P}_k (k=2,3,4,\cdots)$の位置ベクトルを$\overrightarrow{\textrm{OP}_k}=\vec{e_1}+\vec{e_2}+\vec{e_3}+\cdots+\vec{e_{2^k}}$とする。たとえば、$\overrightarrow{\textrm{OP}_1}=(1,0)+(0,1)+(-1,0)+(0,1)=(0,2)$である。$\{a_n\}$を定める規則に注目すると、$|\overrightarrow{\textrm{OP}_{k+1}}|$は$|\overrightarrow{\textrm{OP}_{k}}|$の$\boxed{キ}$倍であり、$\angle{\textrm{P}_k\textrm{OP}_{k+1}}=\boxed{ク}$である。このことから$\overrightarrow{\textrm{OP}_{99}}$は$(\boxed{ケ},\boxed{コ})$である。
キの解答群
⓪ $\dfrac18$ ① $\dfrac14$ ② $\dfrac12$ ③ $\dfrac{\sqrt{2}}2$ ④ $1$
⑤ $\sqrt2$ ⑥ $2$ ⑦ $2\sqrt2$ ⑧ $4$ ⑨ $8$
クの解答群
⓪ $15^{\circ}$ ① $30^{\circ}$ ② $45^{\circ}$ ③ $60^{\circ}$ ④ $75^{\circ}$
⑤ $90^{\circ}$ ⑥ $105^{\circ}$ ⑦ $120^{\circ}$ ⑧ $135^{\circ}$ ⑨ $150^{\circ}$
ケ、コの解答群
⓪ $-2^{99}$ ① $-2^{98}$ ② $-2^{49}$ ③ $-2^{48}$ ④ $0$
⑤ $1$ ⑥ $2^{48}$ ⑦ $2^{49}$ ⑧ $2^{98}$ ⑨ $2^{99}$
福田の数学〜明治大学2024全学部統一IⅡAB第3問〜変わった規則の数列と点列と面積

単元:
#大学入試過去問(数学)#平面上のベクトル#複素数平面#数列#平面上のベクトルと内積#漸化式#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle
\fcolorbox{#000}{ #fff }{3}
整数からなる数列\{a_n\} \ (n=1,2,3,...)を次の規則1、2により定める。
$
$\displaystyle
(規則1)a_1=0 , \ a_2=1である。
$
$
\displaystyle(規則2)k=1,2,3,...について、初項から第2^{k+1}項までに値のそれぞれに1を加え、\\ それらすべてを逆の順序にしたものが第2^k+1項から第2^{k+1}項までの値と定める。
$
$\displaystyle
(1)以上の規則により得られる数列\{ a_n \}において、a_{10}=\fcolorbox{#000}{ #fff }{$ア \ \ \ $}であり、a_{16}=\fcolorbox{#000}{ #fff }{$イ \ \ \ $}である。 \\
また第2^k項(k=5,6,7,...)の値は\fcolorbox{#000}{ #fff }{$ウ \ \ \ $}である。
$
$\displaystyle
(2)a_{518}を求めたい。上記の規則2によれば、1 \leqq i \leqq 2^kを満たすiに対して、 \\
a_iに1を加えた数と第
\fcolorbox{#000}{ #fff }{$エ \ \ \ $}
項が、等しいと定めている。 \\
実際に、2^b < 518 \leqq 2^{b+1}を満たすような整数bは
\fcolorbox{#000}{ #fff }{$オ \ \ \ $}
であることに注意すれば、a_{518}=
\fcolorbox{#000}{ #fff }{$カ \ \ \ $}
である。
$
$\displaystyle
(3)点O_k(k=1,2,3,...)を次のように定める。\\
数列 \{ a_n \}の初項から第2^k項に着目し、a_nを4で割った余りにしたがって、ベクトル\vec{e_n}を
$
$
\vec{e_n}=
\left\{
\begin{array}{l}
(1,0) \quad a_nが4の倍数のとき \\
(0,1) \quad a_nを4で割った余りが1のとき \\
(-1,0) \quad a_nが4で割った余りが2のとき \\
(0,-1) \quad a_nを4で割った余りが3のとき
\end{array}
\right.
$
$
\displaystyle
によって定め、\\
点P_1の位置ベクトルを\overrightarrow{OP_1}=\vec{e_1}+\vec{e_2}とし、\\
点P_k(k=2,3,4,...)の位置ベクトルを\\
\overrightarrow{OP_k}=\vec{e_1}+\vec{e_2}+\vec{e_3}+...+\vec{e_{2^k}}とする。\\
たとえば、 \\
\overrightarrow{OP_w}=(1,0)+(0,1)+(-1,0)+(0,1)=(0,2)である。\\
\{a_n\}を定める規則に注目すると、 \\
\overrightarrow{OP_{k+1}} は \overrightarrow{OP_k} の\fcolorbox{#000}{ #fff }{$キ \ \ \ $}倍であり、\\
\angle P_kOP_{k+1}=\fcolorbox{#000}{ #fff }{$ク \ \ \ $}である。\\
このことから\\
\overrightarrow{OP_{99}}=(\fcolorbox{#000}{ #fff }{$ケ \ \ \ $},\fcolorbox{#000}{ #fff }{$コ \ \ \ $})である。
$
この動画を見る
$\displaystyle
\fcolorbox{#000}{ #fff }{3}
整数からなる数列\{a_n\} \ (n=1,2,3,...)を次の規則1、2により定める。
$
$\displaystyle
(規則1)a_1=0 , \ a_2=1である。
$
$
\displaystyle(規則2)k=1,2,3,...について、初項から第2^{k+1}項までに値のそれぞれに1を加え、\\ それらすべてを逆の順序にしたものが第2^k+1項から第2^{k+1}項までの値と定める。
$
$\displaystyle
(1)以上の規則により得られる数列\{ a_n \}において、a_{10}=\fcolorbox{#000}{ #fff }{$ア \ \ \ $}であり、a_{16}=\fcolorbox{#000}{ #fff }{$イ \ \ \ $}である。 \\
また第2^k項(k=5,6,7,...)の値は\fcolorbox{#000}{ #fff }{$ウ \ \ \ $}である。
$
$\displaystyle
(2)a_{518}を求めたい。上記の規則2によれば、1 \leqq i \leqq 2^kを満たすiに対して、 \\
a_iに1を加えた数と第
\fcolorbox{#000}{ #fff }{$エ \ \ \ $}
項が、等しいと定めている。 \\
実際に、2^b < 518 \leqq 2^{b+1}を満たすような整数bは
\fcolorbox{#000}{ #fff }{$オ \ \ \ $}
であることに注意すれば、a_{518}=
\fcolorbox{#000}{ #fff }{$カ \ \ \ $}
である。
$
$\displaystyle
(3)点O_k(k=1,2,3,...)を次のように定める。\\
数列 \{ a_n \}の初項から第2^k項に着目し、a_nを4で割った余りにしたがって、ベクトル\vec{e_n}を
$
$
\vec{e_n}=
\left\{
\begin{array}{l}
(1,0) \quad a_nが4の倍数のとき \\
(0,1) \quad a_nを4で割った余りが1のとき \\
(-1,0) \quad a_nが4で割った余りが2のとき \\
(0,-1) \quad a_nを4で割った余りが3のとき
\end{array}
\right.
$
$
\displaystyle
によって定め、\\
点P_1の位置ベクトルを\overrightarrow{OP_1}=\vec{e_1}+\vec{e_2}とし、\\
点P_k(k=2,3,4,...)の位置ベクトルを\\
\overrightarrow{OP_k}=\vec{e_1}+\vec{e_2}+\vec{e_3}+...+\vec{e_{2^k}}とする。\\
たとえば、 \\
\overrightarrow{OP_w}=(1,0)+(0,1)+(-1,0)+(0,1)=(0,2)である。\\
\{a_n\}を定める規則に注目すると、 \\
\overrightarrow{OP_{k+1}} は \overrightarrow{OP_k} の\fcolorbox{#000}{ #fff }{$キ \ \ \ $}倍であり、\\
\angle P_kOP_{k+1}=\fcolorbox{#000}{ #fff }{$ク \ \ \ $}である。\\
このことから\\
\overrightarrow{OP_{99}}=(\fcolorbox{#000}{ #fff }{$ケ \ \ \ $},\fcolorbox{#000}{ #fff }{$コ \ \ \ $})である。
$
百マス計算全部出したらなんぼ?

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
「百マス計算全部出したらいくつか」について解説しています。
この動画を見る
「百マス計算全部出したらいくつか」について解説しています。
