積分とその応用
#前橋工科大学2024#定積分_13#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{1}{2}(1-\cos x)^2 dx$
出典:2024年前橋工科大学
この動画を見る
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{1}{2}(1-\cos x)^2 dx$
出典:2024年前橋工科大学
#群馬大学推薦2023#定積分_12#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#群馬大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{\pi}{2n}\sin\displaystyle \frac{k \pi }{2n}$
出典:2023年群馬大学推薦
この動画を見る
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{\pi}{2n}\sin\displaystyle \frac{k \pi }{2n}$
出典:2023年群馬大学推薦
#茨城大学2024#定積分_11#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} x 2^{x-1}$ $dx$
出典:2024年茨城大学
この動画を見る
$\displaystyle \int_{1}^{2} x 2^{x-1}$ $dx$
出典:2024年茨城大学
大学入試問題#909「基本に忠実に」 前橋工科大学(2023)
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ 3 }} (x^7-3x^3)e-\displaystyle \frac{x^4}{4}$ $dx$
出典:2023年前橋工科大学
この動画を見る
$\displaystyle \int_{0}^{\sqrt{ 3 }} (x^7-3x^3)e-\displaystyle \frac{x^4}{4}$ $dx$
出典:2023年前橋工科大学
#会津大学2023#定積分_9#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \sin3x\cos2x$ $dx$
出典:2023年会津大学
この動画を見る
$\displaystyle \int_{0}^{\pi} \sin3x\cos2x$ $dx$
出典:2023年会津大学
どゆこと?
#茨城大学2024#定積分_8#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos\theta\sin 2 \theta d \theta$
出典:2024年茨城大学後期
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos\theta\sin 2 \theta d \theta$
出典:2024年茨城大学後期
大学入試問題#908「正確に対応するだけ」 #信州大学理学部(2024) #積分方程式
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ
$f(x)=x+\displaystyle \int_{0}^{\pi} f(t) \cos(x+t) dt$
出典:2024年信州大学理学部
この動画を見る
次の等式を満たす関数$f(x)$を求めよ
$f(x)=x+\displaystyle \int_{0}^{\pi} f(t) \cos(x+t) dt$
出典:2024年信州大学理学部
#茨城大学2024#定積分_7#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} e^x(e^{2x}+\frac{1}{e^{2x}}) dx$
出典:2024年茨城大学
この動画を見る
$\displaystyle \int_{0}^{1} e^x(e^{2x}+\frac{1}{e^{2x}}) dx$
出典:2024年茨城大学
#茨城大学後期2024#定積分_6#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{4} \displaystyle \frac{2}{x^2-1} dx$
出典:2024年茨城大学後期
この動画を見る
$\displaystyle \int_{2}^{4} \displaystyle \frac{2}{x^2-1} dx$
出典:2024年茨城大学後期
#茨城大学2024#区分求積法_5#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^{3}}\displaystyle \sum_{k=1}^n (n-k)^2$
出典:2024年茨城大学
この動画を見る
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^{3}}\displaystyle \sum_{k=1}^n (n-k)^2$
出典:2024年茨城大学
#福島大学2024#定積分_4#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#福島大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x\sqrt{ 1-x }$ $dx$
出典:2024年福島大学
この動画を見る
$\displaystyle \int_{0}^{1} x\sqrt{ 1-x }$ $dx$
出典:2024年福島大学
#高専数学#不定積分_12#元高専教員
単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int fan^{-1}x$ $dx$
この動画を見る
$\displaystyle \int fan^{-1}x$ $dx$
#会津大学2024#定積分_3#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{e^2}^{e^3} \displaystyle \frac{1}{x log x} dx$
出典:2024年会津大学
この動画を見る
$\displaystyle \int_{e^2}^{e^3} \displaystyle \frac{1}{x log x} dx$
出典:2024年会津大学
大学入試問題#905「基本変形の王道」 #信州大学教育学部(2024) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\cos x\cos 2x-\cos3x\sin4x) dx$
出典:2024年信州大学教育学部
この動画を見る
$\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\cos x\cos 2x-\cos3x\sin4x) dx$
出典:2024年信州大学教育学部
#高専数学_12#定積分#元高専教員
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{3x^2+1} dx$
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{3x^2+1} dx$
#茨城大学2024#定積分_2#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} x^3(x+2)^2 dx$
出典:2024年茨城大学後期
この動画を見る
$\displaystyle \int_{-1}^{1} x^3(x+2)^2 dx$
出典:2024年茨城大学後期
#高専数学_11#定積分#元高専教員
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{dx}{x^2-4x+8}$
この動画を見る
$\displaystyle \int_{0}^{4} \displaystyle \frac{dx}{x^2-4x+8}$
#茨城大学2024_1#定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^5x\cos x$ $dx$
出典:2024年茨城大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^5x\cos x$ $dx$
出典:2024年茨城大学
#高専数学_10#不定積分#元高専教員
単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{(x-2)^2} dx$
この動画を見る
$\displaystyle \int \displaystyle \frac{x}{(x-2)^2} dx$
#高専数学_9#不定積分#元高専教員
単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
下記の不定積分を解け。
$\displaystyle \int \displaystyle \frac{1}{\sqrt{ 4-x^2 }} dx$
この動画を見る
下記の不定積分を解け。
$\displaystyle \int \displaystyle \frac{1}{\sqrt{ 4-x^2 }} dx$
#千葉大学2016#定積分#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^3x$ $dx$
出典:2016年千葉大学
この動画を見る
以下の定積分を解け。
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^3x$ $dx$
出典:2016年千葉大学
#高専_8#不定積分#元高専教員
単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{x^3}{x-1}$ $dx$
この動画を見る
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{x^3}{x-1}$ $dx$
#千葉大学2021#不定積分#元高専教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int x log(x^2-1) dx$
出典:2021年千葉大学
この動画を見る
以下の不定積分を解け。
$\displaystyle \int x log(x^2-1) dx$
出典:2021年千葉大学
#高専_7#定積分#元高専教員
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{\sqrt{ 2 }} \displaystyle \frac{1+2x}{\sqrt{ 4-x^2 }} dx$
この動画を見る
以下の定積分を解け。
$\displaystyle \int_{0}^{\sqrt{ 2 }} \displaystyle \frac{1+2x}{\sqrt{ 4-x^2 }} dx$
#千葉大学2018#不定積分#数学者
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \sin^3x \cos^2x$ $dx$
出典:2018年千葉大学
この動画を見る
以下の不定積分を解け。
$\displaystyle \int \sin^3x \cos^2x$ $dx$
出典:2018年千葉大学
#高専_6#不定積分#元高専教員
単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int (3x+1)\cos2x$ $dx$
この動画を見る
以下の不定積分を解け。
$\displaystyle \int (3x+1)\cos2x$ $dx$
#高専数学_5#不定積分#元高専教員
単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
下記の不定積分を解け。
$\displaystyle \int x log (x+1)$ $dx$
この動画を見る
下記の不定積分を解け。
$\displaystyle \int x log (x+1)$ $dx$
#千葉大学2020#不定積分#ますただ
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int x\cos x$ $dx$
出典:2024年千葉大学
この動画を見る
$\displaystyle \int x\cos x$ $dx$
出典:2024年千葉大学
#高専_4#不定積分#元高専教員
単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{(log t)^2}{t} dt$
この動画を見る
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{(log t)^2}{t} dt$