数Ⅲ
福田のわかった数学〜高校3年生理系009〜極限(9)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(9)
(1)$|x| \lt 1$のとき、$\lim_{n \to \infty}nx^n=0$を示せ。
(2)$\displaystyle \sum_{n=1}^{\infty}nx^{n-1}$の収束・発散を調べよ。
この動画を見る
数学$\textrm{III}$ 極限(9)
(1)$|x| \lt 1$のとき、$\lim_{n \to \infty}nx^n=0$を示せ。
(2)$\displaystyle \sum_{n=1}^{\infty}nx^{n-1}$の収束・発散を調べよ。
福田のわかった数学〜高校3年生理系008〜極限(8)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(8)
自然数$N$は$n$桁の数とする。
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{\log_{10}N}{n}$を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(8)
自然数$N$は$n$桁の数とする。
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{\log_{10}N}{n}$を求めよ。
【理数個別の過去問解説】2021年度東京大学 数学 理科第3問(2)解説
単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科第3問(2)それぞれの項で分けて丁寧に積分せよ
関数
$f(x)=\dfrac{x}{x²+3}$
に対して、$y=f(x)$のグラフをCとする。点A($1,f(1)$)におけるCの接線を
$l:y=g(x)$
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
$\displaystyle \int_{\alpha}^1{f(x)-g(x)}^2 dx$
を計算せよ。
この動画を見る
東京大学 2021年理科第3問(2)それぞれの項で分けて丁寧に積分せよ
関数
$f(x)=\dfrac{x}{x²+3}$
に対して、$y=f(x)$のグラフをCとする。点A($1,f(1)$)におけるCの接線を
$l:y=g(x)$
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
$\displaystyle \int_{\alpha}^1{f(x)-g(x)}^2 dx$
を計算せよ。
福田のわかった数学〜高校3年生理系007〜極限(7)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(7)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{n^2}{2^n}$を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(7)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{n^2}{2^n}$を求めよ。
【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第3問(1)解説
単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科第3問(1)曲線と接線の接点以外の共有点を求めよ
関数
f(x)=x/(x²+3)
に対して、y=f(x)のグラフをCとする。点A(1,f(1))におけるCの接線を
l:y=g(x)
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
∫{f(x)-g(x)}²dx
を計算せよ。
この動画を見る
東京大学 2021年理科第3問(1)曲線と接線の接点以外の共有点を求めよ
関数
f(x)=x/(x²+3)
に対して、y=f(x)のグラフをCとする。点A(1,f(1))におけるCの接線を
l:y=g(x)
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
∫{f(x)-g(x)}²dx
を計算せよ。
福田のわかった数学〜高校3年生理系006〜極限(6)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(6)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{\log(2n^2+1)}{\log(n+2)}$ を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(6)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{\log(2n^2+1)}{\log(n+2)}$ を求めよ。
福田のわかった数学〜高校3年生理系005〜極限(5)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(5)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{1}{n}\displaystyle\sqrt[n]{{}_{2n}\mathrm{P}_{n}}$を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(5)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{1}{n}\displaystyle\sqrt[n]{{}_{2n}\mathrm{P}_{n}}$を求めよ。
福田のわかった数学〜高校3年生理系004〜極限(4)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(4)
$\displaystyle\lim_{n \to \infty}a_n=0$にもかかわらず
$\displaystyle \sum_{n=1}^{\infty}a_n$が発散する例を作れ。
この動画を見る
数学$\textrm{III}$ 極限(4)
$\displaystyle\lim_{n \to \infty}a_n=0$にもかかわらず
$\displaystyle \sum_{n=1}^{\infty}a_n$が発散する例を作れ。
福田のわかった数学〜高校3年生理系003〜極限(3)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
福田のわかった数学〜高校3年生理系002〜極限(2)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(2)
次の命題で正しくないものは反例を示せ。
(1)$\displaystyle\lim_{n \to \infty}a_n=+\infty,\displaystyle\lim_{n \to \infty}b_n=+\infty \to \displaystyle\lim_{n \to \infty}(a_n-b_n)=0$
(2)$\displaystyle\lim_{n \to \infty}a_n=+\infty,\displaystyle\lim_{n \to \infty}b_n=0 \to \displaystyle\lim_{n \to \infty}a_nb_n=0$
(3)$0 \leqq a_n \lt 1 \to \displaystyle\lim_{n \to \infty}(a_n)^n=0$
この動画を見る
数学$\textrm{III}$ 極限(2)
次の命題で正しくないものは反例を示せ。
(1)$\displaystyle\lim_{n \to \infty}a_n=+\infty,\displaystyle\lim_{n \to \infty}b_n=+\infty \to \displaystyle\lim_{n \to \infty}(a_n-b_n)=0$
(2)$\displaystyle\lim_{n \to \infty}a_n=+\infty,\displaystyle\lim_{n \to \infty}b_n=0 \to \displaystyle\lim_{n \to \infty}a_nb_n=0$
(3)$0 \leqq a_n \lt 1 \to \displaystyle\lim_{n \to \infty}(a_n)^n=0$
福田のわかった数学〜高校3年生理系001〜極限(1)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(1)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{a_n+3}{a_n+1}=2$のとき
$\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(1)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{a_n+3}{a_n+1}=2$のとき
$\displaystyle\lim_{n \to \infty}a_n$を求めよ。
【数B・Ⅲ】漸化式と極限:連立漸化式:数列{x[n]},{y[n]}をx[1]=y[1]=1, x[n+1]=(2/3)x[n]+(1/6)y[n], y[n+1]=(1/3)x[n]+(5/6)y…
単元:
#数列#漸化式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列{$x_n$},{$y_n$}を$x_1=y_1=1, x_{n+1}=\dfrac{2}{3}x_n+\dfrac{1}{6}y_n, y_{n+1}=\dfrac{1}{3}x_n+\dfrac{5}{6}y_n$で定めるとき、
(1)$x_{n+1}+αy_{n+1}=\beta(x_n+αy_n)$を満たす$\alpha,\beta$の組を2組求めよう。
(2)数列{$x_n$},{$y_n$}の一般項を求めよう。
(3)数列{$x_n$},{$y_n$}の極限を求めよう。
この動画を見る
数列{$x_n$},{$y_n$}を$x_1=y_1=1, x_{n+1}=\dfrac{2}{3}x_n+\dfrac{1}{6}y_n, y_{n+1}=\dfrac{1}{3}x_n+\dfrac{5}{6}y_n$で定めるとき、
(1)$x_{n+1}+αy_{n+1}=\beta(x_n+αy_n)$を満たす$\alpha,\beta$の組を2組求めよう。
(2)数列{$x_n$},{$y_n$}の一般項を求めよう。
(3)数列{$x_n$},{$y_n$}の極限を求めよう。
指数不等式
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\left(\dfrac{5}{3}\right)^{\frac{x^2+x-3}{x+1}}\leqq \dfrac{2}{3}・\left(\dfrac{5}{2}\right)^{x-\left(\frac{3}{x+1}\right)}$
この動画を見る
これを解け.
$\left(\dfrac{5}{3}\right)^{\frac{x^2+x-3}{x+1}}\leqq \dfrac{2}{3}・\left(\dfrac{5}{2}\right)^{x-\left(\frac{3}{x+1}\right)}$
慶應(理) 関数の極限
単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\gt 0,e a \fallingdotseq 2.71・・・$
(1)$\sqrt x \log_x \gt -1$を示せ.
(2)(1)を利用して$\displaystyle \lim_{x\to +0} x\log x=0$を示せ.
2019慶應(理)過去問
この動画を見る
$x\gt 0,e a \fallingdotseq 2.71・・・$
(1)$\sqrt x \log_x \gt -1$を示せ.
(2)(1)を利用して$\displaystyle \lim_{x\to +0} x\log x=0$を示せ.
2019慶應(理)過去問
ただの不等式
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$30x^2-2・3^{x+1}+19x・3^x \gt 5x^2・3^{x+1}$
$+38x-12$
この動画を見る
これを解け.
$30x^2-2・3^{x+1}+19x・3^x \gt 5x^2・3^{x+1}$
$+38x-12$
立教大 関数の最小値
単元:
#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\gt 0$とする.
$\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{2}{x}\right)$の最小値を求めよ.
2021立教大過去問
この動画を見る
$x\gt 0$とする.
$\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{2}{x}\right)$の最小値を求めよ.
2021立教大過去問
【数Ⅲ】極限:無限総和にひっかかるな!!無限総和は罠がいっぱい
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...=$
$\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...=$
それぞれの無限総和はいくつ??
この動画を見る
$\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...=$
$\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...=$
それぞれの無限総和はいくつ??
【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線 $y^2=8x$ 上の点P($1,-2\sqrt2$)における接線の方程式を求めよう。
この動画を見る
放物線 $y^2=8x$ 上の点P($1,-2\sqrt2$)における接線の方程式を求めよう。
【数Ⅲ】微分法の応用:接線と法線 関数 x²/2 + y²/8 =1 上の点P(1,2)における接線の方程式を求めよう。
単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$上の点P(1,2)における接線の方程式を求めよう。
この動画を見る
曲線$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$上の点P(1,2)における接線の方程式を求めよう。
【数Ⅲ】微分法の応用:接線と法線 曲線 y=√x²+1 に点(1,0)から引いた接線と法線の方程式を求めよう。
単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線 $y=\sqrt{x²+1}$ に点($1,0$)から引いた接線と法線の方程式を求めよう。
この動画を見る
曲線 $y=\sqrt{x²+1}$ に点($1,0$)から引いた接線と法線の方程式を求めよう。
【数Ⅲ】微分法の応用:接線と法線 媒介変数θで表された曲線について、( )内のθの値に対応する点における接線の方程式を求めよう。x=sinθ, y=sin2θ (θ=2π/3)
単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
媒介変数$\theta$で表された曲線について、( )内の$\theta$の値に対応する点における接線の方程式を求めよう。
$x=\sin\theta, y=\sin2\theta (\theta=\dfrac{2\pi}{3})$
この動画を見る
媒介変数$\theta$で表された曲線について、( )内の$\theta$の値に対応する点における接線の方程式を求めよう。
$x=\sin\theta, y=\sin2\theta (\theta=\dfrac{2\pi}{3})$
【数Ⅲ】微分法の応用:接線と法線 関数 y=log(x-1) のグラフ上の点P(-2,0)における接線と法線の方程式を求めよう。
単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 $y=\log(x-1)$ のグラフ上の点P($-2,0$)における接線と法線の方程式を求めよう。
この動画を見る
関数 $y=\log(x-1)$ のグラフ上の点P($-2,0$)における接線と法線の方程式を求めよう。
【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。
単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。
この動画を見る
放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。
【数Ⅲ】極限:ロピタルを使って極限を簡単に求める
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty}\dfrac{1-\cos 3x}{x^2}$を求めよ
この動画を見る
$\displaystyle \lim_{x\to\infty}\dfrac{1-\cos 3x}{x^2}$を求めよ
【数Ⅲ】数列の極限:次の無限級数の和を求めよう。Σ[n=1~∞](1/2^n + 1/5^n)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(\dfrac{1}{2^n}+\dfrac{1}{5^n}\right)$
この動画を見る
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(\dfrac{1}{2^n}+\dfrac{1}{5^n}\right)$
【数Ⅲ】数列の極限:次の極限値を求めよう。lim[n→∞](1-1/2²)(1-1/3²)…(1-1/n²)
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{n\to\infty}\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)・・・\left(1-\dfrac{1}{n^2}\right)$
この動画を見る
次の極限値を求めよう。
$\displaystyle \lim_{n\to\infty}\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)・・・\left(1-\dfrac{1}{n^2}\right)$
福田の数学〜慶應義塾大学2021年理工学部第4問〜はさみうちの原理と区分求積
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}\hspace{240pt}$
(1)$a$は$0 \lt a \leqq \displaystyle \frac{1}{2}$を満たす定数とする。$x \geqq 0$の範囲で不等式
$a\left(x-\displaystyle \frac{x^2}{4}\right) \leqq \log(1+ax)$ が成り立つことを示しなさい。
(2)$b$を実数の定数とする。$x \geqq 0$の範囲で不等式
$\log\left(1+\displaystyle \frac{1}{2}x\right) \leqq bx$
が成り立つような$b$の最小値は$\boxed{\ \ タ\ \ }$である。
(3)$n$と$k$を自然数とし、$I(n,k)=\lim_{t \to +0}\int_0^{\displaystyle \frac{k}{n}}\displaystyle \frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx$
とおく。$I(n,k)$を求めると、$I(n,k)=\boxed{\ \ チ\ \ }$である。また
$\lim_{n \to \infty}\displaystyle \frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ }$ である。
この動画を見る
${\Large\boxed{4}}\hspace{240pt}$
(1)$a$は$0 \lt a \leqq \displaystyle \frac{1}{2}$を満たす定数とする。$x \geqq 0$の範囲で不等式
$a\left(x-\displaystyle \frac{x^2}{4}\right) \leqq \log(1+ax)$ が成り立つことを示しなさい。
(2)$b$を実数の定数とする。$x \geqq 0$の範囲で不等式
$\log\left(1+\displaystyle \frac{1}{2}x\right) \leqq bx$
が成り立つような$b$の最小値は$\boxed{\ \ タ\ \ }$である。
(3)$n$と$k$を自然数とし、$I(n,k)=\lim_{t \to +0}\int_0^{\displaystyle \frac{k}{n}}\displaystyle \frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx$
とおく。$I(n,k)$を求めると、$I(n,k)=\boxed{\ \ チ\ \ }$である。また
$\lim_{n \to \infty}\displaystyle \frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ }$ である。
福田の数学〜慶應義塾大学2021年理工学部第3問〜確率と数列の極限
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $n$を自然数とする。1個のさいころを繰り返し投げる実験を行い、繰り返す回数が
$2n+1$回に達するか、5以上の目が2回連続して出た場合に実験を終了する。下の表は
$n=2$の場合の例である。例$\textrm{a}$では、5以上の目が2回連続して出ず、5回で実験を
終了した。例$\textrm{b}$では、5以上の目が2回連続して出たため、3回で実験を終了した。
$\begin{array}{c|ccccc}
& 1回目 & 2回目 & 3回目 & 4回目 & 5回目\\
\hline 例\textrm{a} & ⚃ & ⚅ & ⚀ & ⚁ & ⚀\\
例\textrm{b} & ⚂ & ⚅ & ⚄ \\
\end{array}\hspace{100pt}$
この実験において、$A$を「5以上の目が2回連続して出る」事象、非負の整数$k$に対し
$B_k$を「5未満の目が出た回数がちょうど$k$である」事象とする。一般に、事象Cの
確率を$P(C),C$が起こったときの事象$D$が起こる条件付き確率を$P_C(D)$と表す。
(1)$n=1$のとき、$P(B_1)=\boxed{\ \ サ\ \ }$である。
(2)$n=2$のとき、$P_{B_{2}}(A)=\boxed{\ \ シ\ \ }$である。
以下、$n \geqq 1$とする。
(3)$P_{B_{k}}(A)=1$となる$k$の値の範囲は$0 \leqq k \leqq K_n$と表すことができる。この$K_n$を
$n$の式で表すと$K_n=\boxed{\ \ ス\ \ }$である。
(4)$p_k=P(A \cap B_k)$とおく。$0 \leqq k \leqq K_n$のとき、$p_k$を求めると$p_k=\boxed{\ \ セ\ \ }$である。
また、$S_n=\displaystyle \sum_{k=0}^{K_n}kp_k$ とおくと$\lim_{n \to \infty}S_n=\boxed{\ \ ソ\ \ }$である。
2021慶應義塾大学理工学部過去問
この動画を見る
${\Large\boxed{3}}$ $n$を自然数とする。1個のさいころを繰り返し投げる実験を行い、繰り返す回数が
$2n+1$回に達するか、5以上の目が2回連続して出た場合に実験を終了する。下の表は
$n=2$の場合の例である。例$\textrm{a}$では、5以上の目が2回連続して出ず、5回で実験を
終了した。例$\textrm{b}$では、5以上の目が2回連続して出たため、3回で実験を終了した。
$\begin{array}{c|ccccc}
& 1回目 & 2回目 & 3回目 & 4回目 & 5回目\\
\hline 例\textrm{a} & ⚃ & ⚅ & ⚀ & ⚁ & ⚀\\
例\textrm{b} & ⚂ & ⚅ & ⚄ \\
\end{array}\hspace{100pt}$
この実験において、$A$を「5以上の目が2回連続して出る」事象、非負の整数$k$に対し
$B_k$を「5未満の目が出た回数がちょうど$k$である」事象とする。一般に、事象Cの
確率を$P(C),C$が起こったときの事象$D$が起こる条件付き確率を$P_C(D)$と表す。
(1)$n=1$のとき、$P(B_1)=\boxed{\ \ サ\ \ }$である。
(2)$n=2$のとき、$P_{B_{2}}(A)=\boxed{\ \ シ\ \ }$である。
以下、$n \geqq 1$とする。
(3)$P_{B_{k}}(A)=1$となる$k$の値の範囲は$0 \leqq k \leqq K_n$と表すことができる。この$K_n$を
$n$の式で表すと$K_n=\boxed{\ \ ス\ \ }$である。
(4)$p_k=P(A \cap B_k)$とおく。$0 \leqq k \leqq K_n$のとき、$p_k$を求めると$p_k=\boxed{\ \ セ\ \ }$である。
また、$S_n=\displaystyle \sum_{k=0}^{K_n}kp_k$ とおくと$\lim_{n \to \infty}S_n=\boxed{\ \ ソ\ \ }$である。
2021慶應義塾大学理工学部過去問
福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x-(t^2+2)y+4t+2=0$
を考える。
(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。
(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。
(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。
2021慶應義塾大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x-(t^2+2)y+4t+2=0$
を考える。
(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。
(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。
(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。
2021慶應義塾大学理工学部過去問
2021藤田医科大 微分の公式
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=\sqrt{x+\sqrt{x^2-9}}$
$f`_{(5)}=\Box$
$\Box$を求めよ.
2021藤田医科大過去問
この動画を見る
$f(x)=\sqrt{x+\sqrt{x^2-9}}$
$f`_{(5)}=\Box$
$\Box$を求めよ.
2021藤田医科大過去問