数Ⅲ
数Ⅲ
練習問題31 積分 数検準1級 教採対応

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \dfrac{\tan^{-1}x+1}{x^2+1}dx$
を計算せよ.
この動画を見る
$\displaystyle \int_{0}^{1} \dfrac{\tan^{-1}x+1}{x^2+1}dx$
を計算せよ.
福田のわかった数学〜高校3年生理系022〜極限(22)関数の極限、三角関数の極限(2)

単元:
#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(2)
$\sin x$ を定義に従って微分せよ。
この動画を見る
数学$\textrm{III}$ 三角関数の極限(2)
$\sin x$ を定義に従って微分せよ。
福田のわかった数学〜高校3年生理系021〜極限(21)関数の極限、三角関数の極限(1)

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(1)
$\lim_{x \to 0}\displaystyle \frac{\sin\theta}{\theta}=1$ を証明せよ。
この動画を見る
数学$\textrm{III}$ 三角関数の極限(1)
$\lim_{x \to 0}\displaystyle \frac{\sin\theta}{\theta}=1$ を証明せよ。
福田の数学〜早稲田大学2021年理工学部第3問〜複素数平面上の点の軌跡

単元:
#大学入試過去問(数学)#複素数平面#積分とその応用#複素数平面#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 複素数$\alpha=2+i,$ $\beta=-\displaystyle \frac{1}{2}+i$に対応する複素数平面上の点を$A(\alpha),\ B(\beta)$とする。
このとき、以下の問いに答えよ。
(1)複素数平面上の点$C(\alpha^2),\ D(\beta^2)$と原点$O$の3点は一直線上にあることを示せ。
(2)点$P(z)$が直線$AB$上を動くとき、$z^2$の実部を$x$、虚部を$y$として、点$Q(z^2)$の軌跡
を$x,y$の方程式で表せ。
(3)点$P(z)$が三角形$OAB$の周および内部にあるとき、点$Q(z^2)$全体のなす図形をK
とする。$K$を複素数平面上に図示せよ。
(4)(3)の図形$K$の面積を求めよ。
2021早稲田大学理工学部過去問
この動画を見る
${\Large\boxed{3}}$ 複素数$\alpha=2+i,$ $\beta=-\displaystyle \frac{1}{2}+i$に対応する複素数平面上の点を$A(\alpha),\ B(\beta)$とする。
このとき、以下の問いに答えよ。
(1)複素数平面上の点$C(\alpha^2),\ D(\beta^2)$と原点$O$の3点は一直線上にあることを示せ。
(2)点$P(z)$が直線$AB$上を動くとき、$z^2$の実部を$x$、虚部を$y$として、点$Q(z^2)$の軌跡
を$x,y$の方程式で表せ。
(3)点$P(z)$が三角形$OAB$の周および内部にあるとき、点$Q(z^2)$全体のなす図形をK
とする。$K$を複素数平面上に図示せよ。
(4)(3)の図形$K$の面積を求めよ。
2021早稲田大学理工学部過去問
福田のわかった数学〜高校3年生理系020〜極限(20)関数の極限、無理関数の極限(5)

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(5)
$\displaystyle\lim_{x \to \infty}(\sqrt{x^2+2x+3}-(ax+b))$
を求めよ。
この動画を見る
数学$\textrm{III}$ 無理関数の極限(5)
$\displaystyle\lim_{x \to \infty}(\sqrt{x^2+2x+3}-(ax+b))$
を求めよ。
03京都府教員採用試験(数学:3番 微分方程式(特殊解)

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$(\sin x+1)\dfrac{dy}{dx}-(y+1)\cos x=0$
$x=0$とき,$y=1$をみたす特殊解を求めよ.
この動画を見る
$\boxed{3}$
$(\sin x+1)\dfrac{dy}{dx}-(y+1)\cos x=0$
$x=0$とき,$y=1$をみたす特殊解を求めよ.
福田のわかった数学〜高校3年生理系019〜極限(19)関数の極限、無理関数の極限(4)

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(4)
$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+x+1}-$$\sqrt{x^2-x+1})$ を求めよ。
この動画を見る
数学$\textrm{III}$ 無理関数の極限(4)
$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+x+1}-$$\sqrt{x^2-x+1})$ を求めよ。
福田の数学〜早稲田大学2021年理工学部第1問〜2直線のなす角の最小

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。
(2)$\tan\angle APB$を$t$を用いて表せ。
(3)$\angle APB$を最小にする$t$の値を求めよ。
2021早稲田大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。
(2)$\tan\angle APB$を$t$を用いて表せ。
(3)$\angle APB$を最小にする$t$の値を求めよ。
2021早稲田大学理工学部過去問
福田のわかった数学〜高校3年生理系018〜極限(18)関数の極限、無理関数の極限(3)

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(3)
$\displaystyle \lim_{x \to \infty}(\sqrt{x^2+x+1}-$$\sqrt{x^2-x+1})$ を求めよ。
この動画を見る
数学$\textrm{III}$ 無理関数の極限(3)
$\displaystyle \lim_{x \to \infty}(\sqrt{x^2+x+1}-$$\sqrt{x^2-x+1})$ を求めよ。
福田のわかった数学〜高校3年生理系017〜関数の極限、無理関数の極限(2)

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(2)
$\lim_{x \to 1}\displaystyle \frac{\sqrt[3]x-1}{\sqrt x-1}$ を求めよ。
この動画を見る
数学$\textrm{III}$ 無理関数の極限(2)
$\lim_{x \to 1}\displaystyle \frac{\sqrt[3]x-1}{\sqrt x-1}$ を求めよ。
#18数検1級1次過去問 3重積分

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
$D:x^2+y^2 \leqq z \leqq 2x$
$ \displaystyle \iiint_D \ dx\ dy\ dz$
の値を求めよ.
この動画を見る
$\boxed{7}$
$D:x^2+y^2 \leqq z \leqq 2x$
$ \displaystyle \iiint_D \ dx\ dy\ dz$
の値を求めよ.
福田のわかった数学〜高校3年生理系016〜極限(16)関数の極限、無理関数の極限

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(16)
$\lim_{x \to 1}\displaystyle \frac{\sqrt{x+8}-3}{\sqrt{x+3}-2}$ を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(16)
$\lim_{x \to 1}\displaystyle \frac{\sqrt{x+8}-3}{\sqrt{x+3}-2}$ を求めよ。
08岡山県教員採用試験(数学:6番 積分・面積)

単元:
#積分とその応用#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$x\geqq 1$とする.
$f(x)=\sin (\log x)$
各$n=0,1,2,・・・$に対して$f(a_n)=0$とする.
曲線$y=f(x)$ $(a_n \leqq x \leqq a_{n+1})$と
$x$軸で囲まれた面積$S_n$を求めよ.
この動画を見る
$\boxed{6}$
$x\geqq 1$とする.
$f(x)=\sin (\log x)$
各$n=0,1,2,・・・$に対して$f(a_n)=0$とする.
曲線$y=f(x)$ $(a_n \leqq x \leqq a_{n+1})$と
$x$軸で囲まれた面積$S_n$を求めよ.
数学「大学入試良問集」【12−2 微分と直方体の体積】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#朝日大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
縦$x$、横$y$、高さ$z$の和が12、表面積が90であるような直方体を考える。
(1)$y+z$および$yz$を$x$の式で表せ。
(2)このような直方体が存在するための$x$の範囲を求めよ。
(3)このような直方体のうち体積が最大であるものを求めよ。
この動画を見る
縦$x$、横$y$、高さ$z$の和が12、表面積が90であるような直方体を考える。
(1)$y+z$および$yz$を$x$の式で表せ。
(2)このような直方体が存在するための$x$の範囲を求めよ。
(3)このような直方体のうち体積が最大であるものを求めよ。
福田のわかった数学〜高校3年生理系015〜極限(15)級数と区分求積

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(15)
$\lim_{n \to \infty}\displaystyle \sum_{k=0}^{n-1}\displaystyle \frac{1}{\sqrt{4n^2-k^2}}$ を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(15)
$\lim_{n \to \infty}\displaystyle \sum_{k=0}^{n-1}\displaystyle \frac{1}{\sqrt{4n^2-k^2}}$ を求めよ。
【数Ⅲ】関数と極限:逆関数の交点

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f(x)=\sqrt1{2(x+1)} - 1$について、次の問いに答えなさい。
(1) 関数 $y=f(x)$の逆関数 $y=f^{-1}(x) $を求めよ。
(2) 関数 $y=f(x)$と $y=f^{-1}(x)$ のグラフの共有点の座標を求めよ。
この動画を見る
$f(x)=\sqrt1{2(x+1)} - 1$について、次の問いに答えなさい。
(1) 関数 $y=f(x)$の逆関数 $y=f^{-1}(x) $を求めよ。
(2) 関数 $y=f(x)$と $y=f^{-1}(x)$ のグラフの共有点の座標を求めよ。
微分方程式 同次形 p 163,q3(3)

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$xy^2 \dfrac{dy}{dx}=x^3+y^3$の一般項を求めよ.
この動画を見る
$xy^2 \dfrac{dy}{dx}=x^3+y^3$の一般項を求めよ.
微分方程式(同次型) p 163, q3(1) 高専数学 数検1級

単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$xy\dfrac{dy}{dx}=x^2+y^2$の一般項を求めよ.
この動画を見る
$xy\dfrac{dy}{dx}=x^2+y^2$の一般項を求めよ.
福田のわかった数学〜高校3年生理系014〜極限(14)級数と区分求積

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(14)
$\displaystyle \lim_{n \to \infty}(\dfrac{1^2+2^2+\cdots+n^2}{1+2+\cdots+n}\times$$ \dfrac{1^5+2^5+\cdots+n^5}{1^6+2^6+\cdots+n^6})$
を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(14)
$\displaystyle \lim_{n \to \infty}(\dfrac{1^2+2^2+\cdots+n^2}{1+2+\cdots+n}\times$$ \dfrac{1^5+2^5+\cdots+n^5}{1^6+2^6+\cdots+n^6})$
を求めよ。
11岡山県教員採用試験(数学:1-(6) 微分方程式)

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}-(6)$
$y\dfrac{dy}{dx}=y^2+1$
の一般解を求めよ.
この動画を見る
$\boxed{1}-(6)$
$y\dfrac{dy}{dx}=y^2+1$
の一般解を求めよ.
#17数検1級1次 過去問 微分

単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#微分法#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$0\lt \theta\lt \dfrac{\pi}{2}$,
$x=\sin\theta$
$y=-\log\left(\tan\dfrac{\theta}{2}\right)-\cos\theta$とする.
$\dfrac{d^2y}{dx^2}$を$\theta$で表せ.
この動画を見る
$\boxed{6}$
$0\lt \theta\lt \dfrac{\pi}{2}$,
$x=\sin\theta$
$y=-\log\left(\tan\dfrac{\theta}{2}\right)-\cos\theta$とする.
$\dfrac{d^2y}{dx^2}$を$\theta$で表せ.
福田のわかった数学〜高校3年生理系013〜極限(12)無限等比級数とグラフ

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(13)
$x≠-1$とする。
$x+\displaystyle \frac{x}{1+x}+$$\displaystyle \frac{x}{(1+x)^2}+$$\displaystyle \frac{x}{(1+x)^3}+\cdots$
が収束する$x$の範囲を求めよ。このとき、
その和$f(x)$のグラフを描け。
この動画を見る
数学$\textrm{III}$ 極限(13)
$x≠-1$とする。
$x+\displaystyle \frac{x}{1+x}+$$\displaystyle \frac{x}{(1+x)^2}+$$\displaystyle \frac{x}{(1+x)^3}+\cdots$
が収束する$x$の範囲を求めよ。このとき、
その和$f(x)$のグラフを描け。
#1微分方程式練習問題 (高専数学 数検1級)

単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$ x\dfrac{dy}{dx}=y(\log y-\log x+1)$
の一般解を求めよ.
この動画を見る
$ x\dfrac{dy}{dx}=y(\log y-\log x+1)$
の一般解を求めよ.
福田のわかった数学〜高校3年生理系012〜極限(12)極限関数

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$f(x)$$=\displaystyle\lim_{ n \to \infty }\displaystyle \frac{\tan^{2n+1} x-\tan^n x+1}{\tan^{2n+2} x+\tan^{2n} x+1}$
$(0 \leqq x \lt \displaystyle\frac{\pi}{2})$のグラフをかけ。
この動画を見る
$f(x)$$=\displaystyle\lim_{ n \to \infty }\displaystyle \frac{\tan^{2n+1} x-\tan^n x+1}{\tan^{2n+2} x+\tan^{2n} x+1}$
$(0 \leqq x \lt \displaystyle\frac{\pi}{2})$のグラフをかけ。
福田のわかった数学〜高校3年生理系011〜極限(10)極限関数

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{1}{n}\displaystyle\sqrt[n]{{}_{2n}\mathrm{P}_{n}}$を求めよ。
この動画を見る
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{1}{n}\displaystyle\sqrt[n]{{}_{2n}\mathrm{P}_{n}}$を求めよ。
#15 数検1級1次 過去問 3重積分

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.
$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
この動画を見る
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.
$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
福田のわかった数学〜高校3年生理系010〜極限(10)解けない漸化式の極限

単元:
#数列#漸化式#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(10)
$a_1=2, a_{n+1}=\sqrt{a_n+30}$ のとき、
$\lim_{n \to \infty}a_n$ を調べよ。
この動画を見る
数学$\textrm{III}$ 極限(10)
$a_1=2, a_{n+1}=\sqrt{a_n+30}$ のとき、
$\lim_{n \to \infty}a_n$ を調べよ。
福田のわかった数学〜高校3年生理系009〜極限(9)

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(9)
(1)$|x| \lt 1$のとき、$\lim_{n \to \infty}nx^n=0$を示せ。
(2)$\displaystyle \sum_{n=1}^{\infty}nx^{n-1}$の収束・発散を調べよ。
この動画を見る
数学$\textrm{III}$ 極限(9)
(1)$|x| \lt 1$のとき、$\lim_{n \to \infty}nx^n=0$を示せ。
(2)$\displaystyle \sum_{n=1}^{\infty}nx^{n-1}$の収束・発散を調べよ。
18和歌山県教員採用試験(数学:5番 定積分)

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
$\displaystyle \int_{0}^{1}\dfrac{2x-1}{x^2+x+1}-dx$を解け.
この動画を見る
$\boxed{5}$
$\displaystyle \int_{0}^{1}\dfrac{2x-1}{x^2+x+1}-dx$を解け.
福田のわかった数学〜高校3年生理系008〜極限(8)

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(8)
自然数$N$は$n$桁の数とする。
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{\log_{10}N}{n}$を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(8)
自然数$N$は$n$桁の数とする。
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{\log_{10}N}{n}$を求めよ。
