数Ⅲ
数Ⅲ
大学入試問題#921「癖がない綺麗な神問題」

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a \gt 1$
$I(a)=\displaystyle \int_{0}^{ \pi }\displaystyle \frac{a\sin\theta}{(a^2-2a \cos\theta+1)^{\frac{3}{2}}}d\theta$
1.$I(a)$を求めよ。
2.$\displaystyle \sum_{n=2}^{\infty} I(n)$の値を求めよ。
出典:1997年千葉大学
この動画を見る
$a \gt 1$
$I(a)=\displaystyle \int_{0}^{ \pi }\displaystyle \frac{a\sin\theta}{(a^2-2a \cos\theta+1)^{\frac{3}{2}}}d\theta$
1.$I(a)$を求めよ。
2.$\displaystyle \sum_{n=2}^{\infty} I(n)$の値を求めよ。
出典:1997年千葉大学
#京都大学1965#微分_28#元高校教員

単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3}$において
$f'(1)$を定義に従って求めよ。
出典:1965年京都大学
この動画を見る
$f(x)=\displaystyle \frac{1}{x^3}$において
$f'(1)$を定義に従って求めよ。
出典:1965年京都大学
#高知工科大学2024#定積分_27#元高校教員

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高知工科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \cos^2x dx$
出典:2024年高知工科大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}} \cos^2x dx$
出典:2024年高知工科大学
#高専#不定積分_19#元高専教員

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{2x}-e^{-2x}}{e^x-e^{-x}} dx$
出典:国立高等専門学校機構
この動画を見る
$\displaystyle \int \displaystyle \frac{e^{2x}-e^{-2x}}{e^x-e^{-x}} dx$
出典:国立高等専門学校機構
#青山学院大学2023#定積分_26#元高校教員

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \tan^2x dx$
出典:2023年青山学院大学
この動画を見る
$\displaystyle \int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \tan^2x dx$
出典:2023年青山学院大学
福田のおもしろ数学241〜e^πとπ^eの大小

#高専#不定積分_18#元高専教員

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int\displaystyle \frac{2x+1}{(x^2+x+5)^3} dx$
出典:国立高等専門学校機構
この動画を見る
$\displaystyle \int\displaystyle \frac{2x+1}{(x^2+x+5)^3} dx$
出典:国立高等専門学校機構
大学入試問題#917「さすがに落とせん」

単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ
出典:1965年京都大学
この動画を見る
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ
出典:1965年京都大学
#高専#不定積分_17#元高専教員

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int\displaystyle \frac{(logx+1)^2}{x} dx$
この動画を見る
$\displaystyle \int\displaystyle \frac{(logx+1)^2}{x} dx$
#明治大学2023#定積分_24#元高校教員

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \sin^2 2x dx$
出典:2023年明治大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{3}} \sin^2 2x dx$
出典:2023年明治大学
#高専#不定積分_16#元高専教員

単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x-1}{\sqrt[ 3 ]{ x }-1} dx$
この動画を見る
$\displaystyle \int \displaystyle \frac{x-1}{\sqrt[ 3 ]{ x }-1} dx$
#高知工科大学2024#不定積分_23#元高校教員

単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int x \sin\displaystyle \frac{x}{2} dx$
出典:2024年高知工科大学
この動画を見る
$\displaystyle \int x \sin\displaystyle \frac{x}{2} dx$
出典:2024年高知工科大学
#高専#ウォリス積分_15#元高専教員

単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
(1)$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7 x$ $dx$
(2)$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos^8 x$ $dx$
この動画を見る
(1)$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7 x$ $dx$
(2)$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos^8 x$ $dx$
#広島市立大学2024#不定積分_22#元高校教員

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{e^{ \frac{x}{2}}} dx$
出典:2024年広島市立大学後期 不定積分問題
この動画を見る
$\displaystyle \int \displaystyle \frac{x}{e^{ \frac{x}{2}}} dx$
出典:2024年広島市立大学後期 不定積分問題
福田のおもしろ数学237〜区分求積法の考え方

単元:
#積分とその応用#定積分#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=n}^{2n} \frac{1}{k}$$を求めよ。
この動画を見る
$$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=n}^{2n} \frac{1}{k}$$を求めよ。
大学入試問題#915「減点祭りの問題」 #京都大学1965 #積分方程式

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$x \gt 1$とする。
$\displaystyle \int_{1}^{x} (x-t)f(t)dt=x^4-2x^2+1$を満たす整式$f(t)$を定めよ。
出典:1965年京都大学
この動画を見る
$x \gt 1$とする。
$\displaystyle \int_{1}^{x} (x-t)f(t)dt=x^4-2x^2+1$を満たす整式$f(t)$を定めよ。
出典:1965年京都大学
福田のおもしろ数学236〜不等式で表された領域の面積

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
不等式 $2x^2-2xy+y^2 \leqq 1$ の表す領域の面積を求めよ。
この動画を見る
不等式 $2x^2-2xy+y^2 \leqq 1$ の表す領域の面積を求めよ。
大学入試問題#914「コメントむずい」 #学習院大学2023 #積分方程式

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#学習院大学
指導講師:
ますただ
問題文全文(内容文):
$f(0)=0$
$f'(x)+\displaystyle \int_{0}^{1} f(t) dt=2e^{2x}-e^x$
を満たす関数$f(x)$を求めよ。
出典:2023年学習院大学
この動画を見る
$f(0)=0$
$f'(x)+\displaystyle \int_{0}^{1} f(t) dt=2e^{2x}-e^x$
を満たす関数$f(x)$を求めよ。
出典:2023年学習院大学
#高専数学#不定積分_13#元高専教員

単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{\sqrt{ x+1 }-\sqrt{ x }}$
出典:高専数学 問題集
この動画を見る
$\displaystyle \int \displaystyle \frac{dx}{\sqrt{ x+1 }-\sqrt{ x }}$
出典:高専数学 問題集
#宮崎大学2024#不定積分_20#元高校教員

単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int x^2log$ $x$ $dx$
出典:2024年 宮崎大学
この動画を見る
$\displaystyle \int x^2log$ $x$ $dx$
出典:2024年 宮崎大学
#宮崎大学2024#不定積分_19#元高校教員

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#宮崎大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int x \sqrt{ 1+x^2 }dx$
出典:2024年宮崎大学
この動画を見る
$\displaystyle \int x \sqrt{ 1+x^2 }dx$
出典:2024年宮崎大学
#名古屋工業大学2024#不定積分_18#元高校教員

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int\sqrt{ 2 }$ $logx$ $dx$
出典:2024年 名古屋工業大学
この動画を見る
$\displaystyle \int\sqrt{ 2 }$ $logx$ $dx$
出典:2024年 名古屋工業大学
福田のおもしろ数学234〜区分求積の公式の変形その2

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) $$ = \displaystyle \int_0^1 f(x) dx $ である。では、$\displaystyle \lim_{ n \to \infty } \frac{1}{n+1} \sum_{k=n+2}^{4n+1} f(\frac{k}{n})$ は?
この動画を見る
$\displaystyle \lim_{ n \to \infty } \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) $$ = \displaystyle \int_0^1 f(x) dx $ である。では、$\displaystyle \lim_{ n \to \infty } \frac{1}{n+1} \sum_{k=n+2}^{4n+1} f(\frac{k}{n})$ は?
福田の数学〜浜松医科大学2024医学部第3問〜等式の証明と無限級数の和

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
(1) すべての自然数$n$に対して
$\begin{eqnarray}\displaystyle \sum_{k=1}^n \displaystyle \frac{(-1)^{k-1}}{k} =
\begin{cases}
\displaystyle \sum_{k=1}^m \displaystyle \frac{1}{m+k} & (n が偶数(n = 2m)のとき) \\
\displaystyle \sum_{k=1}^m \displaystyle \frac{1}{m-1+k} & ( nが奇数(n = 2m-1)のとき )
\end{cases}
\end{eqnarray}$
を証明せよ.
(2) (1)の左辺において$n \to \infty$として, 区分求積法を用いて無限級数
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots$
の和の値を求めよ.
(3) (2)の無限級数の項の順序を入れ替えてできる無限級数
$1\underbrace{ -\frac{1}{2}-\frac{1}{4} }_{ 2項 }+\displaystyle \frac{1}{3}\underbrace{ -\frac{1}{6}-\frac{1}{8} }_{ 2項 }+\displaystyle \frac{1}{5}\underbrace{ -\frac{1}{10}-\frac{1}{12} }_{ 2項 }+\cdots$
の和の値を求めよ.
(4) 上の結果からどのようなことが考察されるか.「有限」と「無限」という言葉を用いて述べよ.
この動画を見る
(1) すべての自然数$n$に対して
$\begin{eqnarray}\displaystyle \sum_{k=1}^n \displaystyle \frac{(-1)^{k-1}}{k} =
\begin{cases}
\displaystyle \sum_{k=1}^m \displaystyle \frac{1}{m+k} & (n が偶数(n = 2m)のとき) \\
\displaystyle \sum_{k=1}^m \displaystyle \frac{1}{m-1+k} & ( nが奇数(n = 2m-1)のとき )
\end{cases}
\end{eqnarray}$
を証明せよ.
(2) (1)の左辺において$n \to \infty$として, 区分求積法を用いて無限級数
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots$
の和の値を求めよ.
(3) (2)の無限級数の項の順序を入れ替えてできる無限級数
$1\underbrace{ -\frac{1}{2}-\frac{1}{4} }_{ 2項 }+\displaystyle \frac{1}{3}\underbrace{ -\frac{1}{6}-\frac{1}{8} }_{ 2項 }+\displaystyle \frac{1}{5}\underbrace{ -\frac{1}{10}-\frac{1}{12} }_{ 2項 }+\cdots$
の和の値を求めよ.
(4) 上の結果からどのようなことが考察されるか.「有限」と「無限」という言葉を用いて述べよ.
#宮崎大学2024#定積分_17#元高校教員

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#宮崎大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \cos^2\displaystyle \frac{x}{4} dx$
出典:2024年宮崎大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{3}} \cos^2\displaystyle \frac{x}{4} dx$
出典:2024年宮崎大学
#前橋工科大学2017#定積分_16#元高校教員

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} t\sin^2t$ $dt$
出典:2017年前橋工科大学
この動画を見る
$\displaystyle \int_{0}^{2\pi} t\sin^2t$ $dt$
出典:2017年前橋工科大学
福田のおもしろ数学235〜無限級数の収束・発散の判定

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
無限級数 $1-1+1-1+1-1+1-1+ \cdots$ の収束・発散を判定せよ。
この動画を見る
無限級数 $1-1+1-1+1-1+1-1+ \cdots$ の収束・発散を判定せよ。
福田のおもしろ数学233〜区分求積の公式の変形

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f\left( \frac{k}{n} \right) = \int_0^1 f(x) dx$である。では$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \sum_{k=3}^{n+5} f\left( \frac{k}{n} \right)$はどうなる?
この動画を見る
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f\left( \frac{k}{n} \right) = \int_0^1 f(x) dx$である。では$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \sum_{k=3}^{n+5} f\left( \frac{k}{n} \right)$はどうなる?
#名古屋工業大学2020#定積分_15#元高校教員

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x(x^2+1)^4 dx$
出典:2020年名古屋工業大学
この動画を見る
$\displaystyle \int_{0}^{1} x(x^2+1)^4 dx$
出典:2020年名古屋工業大学
#前橋工科大学2021#定積分_14#元高校教員

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{13} \displaystyle \frac{dx}{\sqrt[ 3 ]{ (2x+1)^5 }}$
出典:2021年前橋工科大学
この動画を見る
$\displaystyle \int_{0}^{13} \displaystyle \frac{dx}{\sqrt[ 3 ]{ (2x+1)^5 }}$
出典:2021年前橋工科大学
