平面上のベクトルと内積
平面上のベクトルと内積
【数B】ベクトル:2021年高3第1回数台全国模試 (文系)

単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、$OA=1、OB=2、\angle AOB=\theta(0\lt\theta\lt\pi)$であるとする。
$\angle AOB$の二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは$ (a・p)^2-2(b・p)+4=0$ を満たすと する。
ただし、$a=OA、b=OB、p=OP$とする。次の問に答えよ。
(1)OCをa,bで表せ。
(2)pをa,b,$\theta$で表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、$OH・p=b・p$であることを示せ。
この動画を見る
三角形OABがあり、$OA=1、OB=2、\angle AOB=\theta(0\lt\theta\lt\pi)$であるとする。
$\angle AOB$の二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは$ (a・p)^2-2(b・p)+4=0$ を満たすと する。
ただし、$a=OA、b=OB、p=OP$とする。次の問に答えよ。
(1)OCをa,bで表せ。
(2)pをa,b,$\theta$で表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、$OH・p=b・p$であることを示せ。
福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$
空間の2点OとAは$|\overrightarrow{ OA }|=2$を満たすとし、点Aを通り$\overrightarrow{ OA }$に直交する平面をHとする。
平面H上の三角形ABCは、正の実数aに対し
$|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2$
を満たすとする。ただし、$\overrightarrow{ u }・\overrightarrow{ v }$はベクトル$\overrightarrow{ u }$と$\overrightarrow{ v }$の内積を表す。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }$の値を求めよ。
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。
(2)ベクトル$\overrightarrow{ OP }$を、実数$\alpha,\beta,\gamma$を用いて
$\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }$と表すとき、
$\alpha,\beta,\gamma$の値をそれぞれ求めよ。
(3)空間の点Qは$2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }$を満たすとする。直線PQが、
点Oを中心とする半径2の球Sに接しているとき、$|\overrightarrow{ AP }|$の値および$a$の値を求めよ。
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、
$\triangle APR$の面積を求めよ。
2021慶應義塾大学経済学部過去問
この動画を見る
${\Large\boxed{5}}$
空間の2点OとAは$|\overrightarrow{ OA }|=2$を満たすとし、点Aを通り$\overrightarrow{ OA }$に直交する平面をHとする。
平面H上の三角形ABCは、正の実数aに対し
$|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2$
を満たすとする。ただし、$\overrightarrow{ u }・\overrightarrow{ v }$はベクトル$\overrightarrow{ u }$と$\overrightarrow{ v }$の内積を表す。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }$の値を求めよ。
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。
(2)ベクトル$\overrightarrow{ OP }$を、実数$\alpha,\beta,\gamma$を用いて
$\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }$と表すとき、
$\alpha,\beta,\gamma$の値をそれぞれ求めよ。
(3)空間の点Qは$2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }$を満たすとする。直線PQが、
点Oを中心とする半径2の球Sに接しているとき、$|\overrightarrow{ AP }|$の値および$a$の値を求めよ。
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、
$\triangle APR$の面積を求めよ。
2021慶應義塾大学経済学部過去問
【数B】ベクトル:2021年高3第1回K塾記述模試

単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
四角形OABCは、$OB+3BC=2AB$を満たしている。また、辺OAを2:1に内分する点を Dとし、$a=OA、c=OC$とする。
(1)OBをa,cを用いて表せ。
(2)2直線$OB,CD$の交点をP とする。$OPwpa,c$を用いて表せ。また、$CP:PD$を求めよ。
(3)$OA=3、OB=\sqrt{15},OC=4$ とする。(i)内積a・cの値を求めよ。(ii)四角形OABCに、CとDが重なるように折 り目を付け、再び広げて四角形に戻す。折り目の直線lと直線OCの公転をNとする とき、$ON:NC$を求めよ。また、3直線$OB,OC,l$で囲まれてできる三角形の面積を求 めよ。
この動画を見る
四角形OABCは、$OB+3BC=2AB$を満たしている。また、辺OAを2:1に内分する点を Dとし、$a=OA、c=OC$とする。
(1)OBをa,cを用いて表せ。
(2)2直線$OB,CD$の交点をP とする。$OPwpa,c$を用いて表せ。また、$CP:PD$を求めよ。
(3)$OA=3、OB=\sqrt{15},OC=4$ とする。(i)内積a・cの値を求めよ。(ii)四角形OABCに、CとDが重なるように折 り目を付け、再び広げて四角形に戻す。折り目の直線lと直線OCの公転をNとする とき、$ON:NC$を求めよ。また、3直線$OB,OC,l$で囲まれてできる三角形の面積を求 めよ。
線形代数:部分空間の判定 #線形代数 #部分空間 #ベクトル空間

単元:
#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
次の集合がベクトル空間の部分空間をなすか判定せよ.
(1)$W_1=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x\neq 2y\right]$
(2)$W_2=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z=0 \right]$
(3)$W_3=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z\geqq 0 \right]$
この動画を見る
次の集合がベクトル空間の部分空間をなすか判定せよ.
(1)$W_1=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x\neq 2y\right]$
(2)$W_2=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z=0 \right]$
(3)$W_3=\left[\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \in IR^3 | x+2y+3z\geqq 0 \right]$
【数B】平面ベクトル:ベクトル方程式 ベクトルと軌跡:座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たす(続きは概要欄で)

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たすとき、Pはどのような図形上の点であるか。
この動画を見る
座標平面において、△ABCはBA・CA=0を満たしている。この平面上の点Pが条件AP・BP+BP・CP+CP・AP=0を満たすとき、Pはどのような図形上の点であるか。
【数B】平面ベクトル:ベクトルの終点の存在範囲 その2

単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)$s+2t=3$
(2)$1≦s+t≦2, s≧0, t≧0$
この動画を見る
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)$s+2t=3$
(2)$1≦s+t≦2, s≧0, t≧0$
【数B】平面ベクトル:ベクトルの終点の存在範囲 その1

単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)$s+2t=3$
(2)$1≦s+t≦2, s≧0, t≧0$
この動画を見る
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)$s+2t=3$
(2)$1≦s+t≦2, s≧0, t≧0$
【中学数学・数C】1次関数・平面ベクトル:座標平面上の三角形の面積

単元:
#数学(中学生)#中2数学#平面上のベクトル#1次関数#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
2x+y-6=0
2x-y+2=0
2x-7y-22=0
によって作られる三角形の面積は?
この動画を見る
2x+y-6=0
2x-y+2=0
2x-7y-22=0
によって作られる三角形の面積は?
【数B】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

【数C】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
点Oを中心とする半径1の円に内接する四角形ABCDについて、次の条件(I)(II)を考える。
(I)AO=-17/2*AB+5AC (II)OA・OC=OA・OD また、θ=∠AOCとする。次の問いに答えよう。
(1)内積OA・OCをθを用いて表そう。
(2)(I)が成り立つとき、(i)OBをOAとOCを用いて表そう。(ii)cosθの値を求めよう。
この動画を見る
点Oを中心とする半径1の円に内接する四角形ABCDについて、次の条件(I)(II)を考える。
(I)AO=-17/2*AB+5AC (II)OA・OC=OA・OD また、θ=∠AOCとする。次の問いに答えよう。
(1)内積OA・OCをθを用いて表そう。
(2)(I)が成り立つとき、(i)OBをOAとOCを用いて表そう。(ii)cosθの値を求めよう。
【数B】平面ベクトル:高2K塾共通テスト模試(ベクトル)を解説してみた!

【数C】平面ベクトル:高2K塾共通テスト模試(ベクトル)を解説してみた!

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#全統模試(河合塾)#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
高2全統共通テスト模試のベクトルの解説です。
この動画を見る
高2全統共通テスト模試のベクトルの解説です。
共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第5問〜ベクトル

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\large第5問}$
$O$を原点とする座標空間に2点$A(-1,2,0), B(2,p,q)$がある。ただし、$q \gt 0$とする。
線分$AB$の中点$C$から直線$OA$に引いた垂線と直線$OA$の交点$D$は、線分$OA$を9:1に内分
するものとする。また、点$C$から直線$OB$に引いた垂線と直線$OB$の交点Eは、線分$OB$を$3:2$
に内分するものとする。
(1)点Bの座標を求めよう。
$|\overrightarrow{ OA }|^2=\boxed{\ \ ア\ \ }$である。また、$\overrightarrow{ OD }=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウエ\ \ }}\overrightarrow{ OA }$であることにより、
$\overrightarrow{ CD }=\displaystyle \frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}\overrightarrow{ OA }-\displaystyle \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\overrightarrow{ OB }$と表される。$\overrightarrow{ OA } \bot \overrightarrow{ CD }$から
$\overrightarrow{ OA }・\overrightarrow{ OB }=\boxed{\ \ ケ\ \ }$ $\ldots$①
である。同様に、$\overrightarrow{ CE }$を$\overrightarrow{ OA },\overrightarrow{ OB }$を用いて表すと、$\overrightarrow{ OB } \bot \overrightarrow{ CE }$から
$|\overrightarrow{ OB }|^2=20$ $\ldots$②
を得る。
①と②、および$q \gt 0$から、$B$の座標は$\left(2, \boxed{\ \ コ\ \ }, \sqrt{\boxed{\ \ サ\ \ }}\right)$である。
(2)3点$O,A,B$の定める平面を$\alpha$とし、点$(4, 4, -\sqrt7)$を$G$とする。
また、$\alpha$上に点$H$を$\overrightarrow{ GH } \bot \overrightarrow{ OA }$と$\overrightarrow{ GH } \bot \overrightarrow{ OB }$が成り立つようにとる。$\overrightarrow{ OH }$を
$\overrightarrow{ OA },\overrightarrow{ OB }$を用いて表そう。
$H$が$\alpha$上にあることから、実数$s,t$を用いて
$\overrightarrow{ OH }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表される。よって
$\overrightarrow{ GH }=\boxed{\ \ シ\ \ }\ \overrightarrow{ OG }+s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
である。これと、$\overrightarrow{ GH } \bot \overrightarrow{ OA }$および$\overrightarrow{ GH } \bot \overrightarrow{ OB }$が成り立つことから、
$s=\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}, t=\displaystyle \frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タチ\ \ }}$が得られる。ゆえに
$\overrightarrow{ OH }=\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\ \overrightarrow{ OA }+\displaystyle \frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タチ\ \ }}\ \overrightarrow{ OB }$
となる。また、このことから、$H$は$\boxed{\boxed{\ \ ツ\ \ }}$であることがわかる。
$\boxed{\boxed{\ \ ツ\ \ }}$の解答群
⓪三角形$OAC$の内部の点
①三角形$OBC$の内部の点
②点$O,C$と異なる、線分$OC$上の点
③三角形$OAB$の周上の点
④三角形$OAB$の内部にも周上にもない点
2021共通テスト過去問
この動画を見る
${\large第5問}$
$O$を原点とする座標空間に2点$A(-1,2,0), B(2,p,q)$がある。ただし、$q \gt 0$とする。
線分$AB$の中点$C$から直線$OA$に引いた垂線と直線$OA$の交点$D$は、線分$OA$を9:1に内分
するものとする。また、点$C$から直線$OB$に引いた垂線と直線$OB$の交点Eは、線分$OB$を$3:2$
に内分するものとする。
(1)点Bの座標を求めよう。
$|\overrightarrow{ OA }|^2=\boxed{\ \ ア\ \ }$である。また、$\overrightarrow{ OD }=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウエ\ \ }}\overrightarrow{ OA }$であることにより、
$\overrightarrow{ CD }=\displaystyle \frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}\overrightarrow{ OA }-\displaystyle \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\overrightarrow{ OB }$と表される。$\overrightarrow{ OA } \bot \overrightarrow{ CD }$から
$\overrightarrow{ OA }・\overrightarrow{ OB }=\boxed{\ \ ケ\ \ }$ $\ldots$①
である。同様に、$\overrightarrow{ CE }$を$\overrightarrow{ OA },\overrightarrow{ OB }$を用いて表すと、$\overrightarrow{ OB } \bot \overrightarrow{ CE }$から
$|\overrightarrow{ OB }|^2=20$ $\ldots$②
を得る。
①と②、および$q \gt 0$から、$B$の座標は$\left(2, \boxed{\ \ コ\ \ }, \sqrt{\boxed{\ \ サ\ \ }}\right)$である。
(2)3点$O,A,B$の定める平面を$\alpha$とし、点$(4, 4, -\sqrt7)$を$G$とする。
また、$\alpha$上に点$H$を$\overrightarrow{ GH } \bot \overrightarrow{ OA }$と$\overrightarrow{ GH } \bot \overrightarrow{ OB }$が成り立つようにとる。$\overrightarrow{ OH }$を
$\overrightarrow{ OA },\overrightarrow{ OB }$を用いて表そう。
$H$が$\alpha$上にあることから、実数$s,t$を用いて
$\overrightarrow{ OH }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表される。よって
$\overrightarrow{ GH }=\boxed{\ \ シ\ \ }\ \overrightarrow{ OG }+s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
である。これと、$\overrightarrow{ GH } \bot \overrightarrow{ OA }$および$\overrightarrow{ GH } \bot \overrightarrow{ OB }$が成り立つことから、
$s=\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}, t=\displaystyle \frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タチ\ \ }}$が得られる。ゆえに
$\overrightarrow{ OH }=\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\ \overrightarrow{ OA }+\displaystyle \frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タチ\ \ }}\ \overrightarrow{ OB }$
となる。また、このことから、$H$は$\boxed{\boxed{\ \ ツ\ \ }}$であることがわかる。
$\boxed{\boxed{\ \ ツ\ \ }}$の解答群
⓪三角形$OAC$の内部の点
①三角形$OBC$の内部の点
②点$O,C$と異なる、線分$OC$上の点
③三角形$OAB$の周上の点
④三角形$OAB$の内部にも周上にもない点
2021共通テスト過去問
共通テスト2021年数学詳しい解説〜共通テスト2021年2B第5問〜ベクトル

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\large第5問}$
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形$OA_1B_1C_1A_2$を考える。
$\angle A_1C_1B_1=\boxed{\ \ アイ\ \ }°$、$\angle C_1A_1A_2=\boxed{\ \ アイ\ \ }°$となることから、$\overrightarrow{ A_1A_2 }$と
$\overrightarrow{ B_1C_1 }$は平行である。ゆえに
$\overrightarrow{ A_1A_2 }=\boxed{\ \ ウ\ \ }\overrightarrow{ B_1C_1 }$
であるから
$\overrightarrow{ B_1C_1 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}\overrightarrow{ A_1A_2 }$$=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
また、$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$は平行で、さらに、$\overrightarrow{ OA_2 }$と$\overrightarrow{ A_1C_1 }$も平行であることから
$\overrightarrow{ B_1C_1 }=\overrightarrow{ B_1A_2 }+\overrightarrow{ A_2O }+\overrightarrow{ OA_1 }+$$\overrightarrow{ A_1C_1 }$$=-\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }-\overrightarrow{ OA_2 }$$+\overrightarrow{ OA_1 }+
\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }$$=\left(\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }\right)$$(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
となる。したがって
$\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}=\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }$
が成り立つ。$a \gt 0$に注意してこれを解くと、$a=\displaystyle \frac{1+\sqrt5}{2}$を得る。
(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。
面$OA_1B_1C_1A_2$に着目する。$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$が平行であることから
$\overrightarrow{ OB_1 }=\overrightarrow{ OA_2 }+\overrightarrow{ A_2B_1 }$$=\overrightarrow{ OA_2 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }$
である。また
$|\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 }|^2=|\overrightarrow{ A_1A_2 }|^2$$=\displaystyle \frac{\boxed{\ \ カ\ \ }+\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$
に注意すると
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\displaystyle \frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
を得る。
次に、面OA_2B_2C_2A_2に着目すると
$\overrightarrow{ OB_2 }=\overrightarrow{ OA_3 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }$
である。さらに
$\overrightarrow{ OA_2 }・\overrightarrow{ OA_3 }=\overrightarrow{ OA_3 }・\overrightarrow{ OA_1 }$$=\frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
が成り立つことがわかる。ゆえに
$\overrightarrow{ OA_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ シ\ \ }},$$ \overrightarrow{ OB_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ ス\ \ }}$
である。
$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$1$
②$-1$
③$\displaystyle \frac{1+\sqrt5}{2}$
④$\displaystyle \frac{1-\sqrt5}{2}$
⑤$\displaystyle \frac{-1+\sqrt5}{2}$
⑥$\displaystyle \frac{-1-\sqrt5}{2}$
⑦$-\displaystyle \frac{1}{2}$
⑧$\displaystyle \frac{-1+\sqrt5}{4}$
⑨$\displaystyle \frac{-1-\sqrt5}{4}$
最後に、面$A_2C_1DEB_2$に着目する。
$\overrightarrow{ B_2D }=\boxed{\ \ ウ\ \ }\overrightarrow{ A_2C_1 }=\overrightarrow{ OB_1 }$
であることに注意すると、4点$O,B_1,D,B_2$は同一平面上にあり、四角形
$OB_1DB_2は\boxed{\boxed{\ \ セ\ \ }}$ことがわかる。
$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない
(ただし、少なくとも1組の対辺が平行な四角形を台形という)
2021共通テスト過去問
この動画を見る
${\large第5問}$
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形$OA_1B_1C_1A_2$を考える。
$\angle A_1C_1B_1=\boxed{\ \ アイ\ \ }°$、$\angle C_1A_1A_2=\boxed{\ \ アイ\ \ }°$となることから、$\overrightarrow{ A_1A_2 }$と
$\overrightarrow{ B_1C_1 }$は平行である。ゆえに
$\overrightarrow{ A_1A_2 }=\boxed{\ \ ウ\ \ }\overrightarrow{ B_1C_1 }$
であるから
$\overrightarrow{ B_1C_1 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}\overrightarrow{ A_1A_2 }$$=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
また、$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$は平行で、さらに、$\overrightarrow{ OA_2 }$と$\overrightarrow{ A_1C_1 }$も平行であることから
$\overrightarrow{ B_1C_1 }=\overrightarrow{ B_1A_2 }+\overrightarrow{ A_2O }+\overrightarrow{ OA_1 }+$$\overrightarrow{ A_1C_1 }$$=-\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }-\overrightarrow{ OA_2 }$$+\overrightarrow{ OA_1 }+
\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }$$=\left(\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }\right)$$(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
となる。したがって
$\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}=\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }$
が成り立つ。$a \gt 0$に注意してこれを解くと、$a=\displaystyle \frac{1+\sqrt5}{2}$を得る。
(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。
面$OA_1B_1C_1A_2$に着目する。$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$が平行であることから
$\overrightarrow{ OB_1 }=\overrightarrow{ OA_2 }+\overrightarrow{ A_2B_1 }$$=\overrightarrow{ OA_2 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }$
である。また
$|\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 }|^2=|\overrightarrow{ A_1A_2 }|^2$$=\displaystyle \frac{\boxed{\ \ カ\ \ }+\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$
に注意すると
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\displaystyle \frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
を得る。
次に、面OA_2B_2C_2A_2に着目すると
$\overrightarrow{ OB_2 }=\overrightarrow{ OA_3 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }$
である。さらに
$\overrightarrow{ OA_2 }・\overrightarrow{ OA_3 }=\overrightarrow{ OA_3 }・\overrightarrow{ OA_1 }$$=\frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
が成り立つことがわかる。ゆえに
$\overrightarrow{ OA_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ シ\ \ }},$$ \overrightarrow{ OB_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ ス\ \ }}$
である。
$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$1$
②$-1$
③$\displaystyle \frac{1+\sqrt5}{2}$
④$\displaystyle \frac{1-\sqrt5}{2}$
⑤$\displaystyle \frac{-1+\sqrt5}{2}$
⑥$\displaystyle \frac{-1-\sqrt5}{2}$
⑦$-\displaystyle \frac{1}{2}$
⑧$\displaystyle \frac{-1+\sqrt5}{4}$
⑨$\displaystyle \frac{-1-\sqrt5}{4}$
最後に、面$A_2C_1DEB_2$に着目する。
$\overrightarrow{ B_2D }=\boxed{\ \ ウ\ \ }\overrightarrow{ A_2C_1 }=\overrightarrow{ OB_1 }$
であることに注意すると、4点$O,B_1,D,B_2$は同一平面上にあり、四角形
$OB_1DB_2は\boxed{\boxed{\ \ セ\ \ }}$ことがわかる。
$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない
(ただし、少なくとも1組の対辺が平行な四角形を台形という)
2021共通テスト過去問
【数C】平面ベクトル:A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
この動画を見る
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
【数B】平面ベクトル:A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
この動画を見る
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
数検準1級1次過去問(3番 ベクトル)

単元:
#数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#平面上のベクトルと内積#数学検定#数学検定準1級#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
3⃣
$|\vec{ a }|=\sqrt{10}$ , $|\vec{ b }|=\sqrt{5}$ , $\vec{ a }・\vec{ b } = -\sqrt{2}$
$ \vec{ a }⊥(\vec{ a }+t\vec{ b })$
のとき$|\vec{ a }+t\vec{ b }|$を求めよ。
この動画を見る
3⃣
$|\vec{ a }|=\sqrt{10}$ , $|\vec{ b }|=\sqrt{5}$ , $\vec{ a }・\vec{ b } = -\sqrt{2}$
$ \vec{ a }⊥(\vec{ a }+t\vec{ b })$
のとき$|\vec{ a }+t\vec{ b }|$を求めよ。
18奈良県教員採用試験(数学:1番 ベクトル)

単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#その他#数学(高校生)#数C#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣一直線上にないO、A、B
$\overrightarrow{ OD } = 3\overrightarrow{ OA }$ , $\overrightarrow{ OE } = 2\overrightarrow{ OB }$
BDとAEの交点をC
(1)$\overrightarrow{ OC } $を$\overrightarrow{ OA } $と$\overrightarrow{ OB } $で表せ
(2)OCとABの交点をF
AF:FBを求めよ。
(3)$|\overrightarrow{ OA } |=4 $ , $|\overrightarrow{ OB }|= 5$ , $|\overrightarrow{ OC }|= 6$のときDEの長さを求めよ。
この動画を見る
1⃣一直線上にないO、A、B
$\overrightarrow{ OD } = 3\overrightarrow{ OA }$ , $\overrightarrow{ OE } = 2\overrightarrow{ OB }$
BDとAEの交点をC
(1)$\overrightarrow{ OC } $を$\overrightarrow{ OA } $と$\overrightarrow{ OB } $で表せ
(2)OCとABの交点をF
AF:FBを求めよ。
(3)$|\overrightarrow{ OA } |=4 $ , $|\overrightarrow{ OB }|= 5$ , $|\overrightarrow{ OC }|= 6$のときDEの長さを求めよ。
【数C】ベクトル:2020年第2回高2K塾記述模試の第7問を解いてみた!

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
【数B】ベクトル:2020年第2回高2K塾記述模試の第7問を解いてみた!

単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
【数C】平面ベクトル:単位ベクトルって何??公式がよくわからない!そんな疑問が1分半で解決♪

【数B】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(2)s+t≦4,s≧0,t≧0

単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.
(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
この動画を見る
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.
(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
19京都府教員採用試験(数学:高4番 ベクトル・三角関数)

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
4⃣$OA=2\sqrt2,OB=4,cos\angle AOB=\frac{\sqrt2}{4}$の△OABにおいて
|$(cost+sint)\overrightarrow{ OA }+(cost-sint)\overrightarrow{ OB }$|
の最大値とそのときのtの値を求めよ。
$(0 \leqq t \leqq \frac{\pi}{4})$
この動画を見る
4⃣$OA=2\sqrt2,OB=4,cos\angle AOB=\frac{\sqrt2}{4}$の△OABにおいて
|$(cost+sint)\overrightarrow{ OA }+(cost-sint)\overrightarrow{ OB }$|
の最大値とそのときのtの値を求めよ。
$(0 \leqq t \leqq \frac{\pi}{4})$
もっちゃんと数学 内積

【数B】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.
(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
この動画を見る
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.
(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
京都府採用試験数学【2016】

単元:
#数Ⅰ#数A#数Ⅱ#数と式#場合の数と確率#平面上のベクトル#複素数平面#図形と計量#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#場合の数#確率#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#対数関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#微分とその応用#積分とその応用#複素数平面#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#数学(高校生)#数C#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
1. x+y+z=10の正の整数解の個数を求めよ。
2. 3つのサイコロを投げる。
出る目の最大値と最小値の差が2になる確率を求めよ。
3. 複素数$(\frac{-1+\sqrt{3}i}{2})^{2015} + (\frac{-1-\sqrt{3}i}{2})^{2015}$
4. $log_{2}3$は無理数を示せ
5. $△OAB = \frac{|a_1b_2-a_2b_1|}{2}$を示せ
*図は動画内参照
6. f(x)=e^x sinx
(1) $0 \leqq x \leqq \pi$ y=f(x)の極大値を求めよ。
(2)x軸とy=f(x) ($0 \leqq x \leqq \pi$)で囲まれた面積を求めよ。
7. $\frac{1}{2015} , \frac{2}{2015} , \cdots , \frac{2015}{2015}$のうち既約分数の個数を求めよ。
8. $n \in \mathbb{ N }$
$2(\sqrt{n+1} - 1) < 1 + \frac{1}{\sqrt 2} + \frac{1}{\sqrt 3} + \cdots + \frac{1}{\sqrt n}$
この動画を見る
1. x+y+z=10の正の整数解の個数を求めよ。
2. 3つのサイコロを投げる。
出る目の最大値と最小値の差が2になる確率を求めよ。
3. 複素数$(\frac{-1+\sqrt{3}i}{2})^{2015} + (\frac{-1-\sqrt{3}i}{2})^{2015}$
4. $log_{2}3$は無理数を示せ
5. $△OAB = \frac{|a_1b_2-a_2b_1|}{2}$を示せ
*図は動画内参照
6. f(x)=e^x sinx
(1) $0 \leqq x \leqq \pi$ y=f(x)の極大値を求めよ。
(2)x軸とy=f(x) ($0 \leqq x \leqq \pi$)で囲まれた面積を求めよ。
7. $\frac{1}{2015} , \frac{2}{2015} , \cdots , \frac{2015}{2015}$のうち既約分数の個数を求めよ。
8. $n \in \mathbb{ N }$
$2(\sqrt{n+1} - 1) < 1 + \frac{1}{\sqrt 2} + \frac{1}{\sqrt 3} + \cdots + \frac{1}{\sqrt n}$
【裏技】ベクトルと面積比、これ知らない奴来い!

【数学】ベクトル内積の成分表示ってどうしてこうなるの?

【数学】ベクトルの面積公式の語呂合わせ・証明を10分でまとめてみた

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】ベクトルの面積公式の語呂合わせ・証明のまとめ動画です
この動画を見る
【数学】ベクトルの面積公式の語呂合わせ・証明のまとめ動画です
【数C】30分でベクトルを総まとめしてみた【1.5倍速推奨 / 教科書レベル】

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数B】30分でベクトルを総まとめ動画です
-----------------
$\vec{ a }=(1,-2)$とのなす角が$45^{ \circ }$で、大きさが$\sqrt{ 10 }$のベクトルを求めよ。
この動画を見る
【数B】30分でベクトルを総まとめ動画です
-----------------
$\vec{ a }=(1,-2)$とのなす角が$45^{ \circ }$で、大きさが$\sqrt{ 10 }$のベクトルを求めよ。
