数学(高校生)
福田の数学〜九州大学2024年理系第1問〜空間における三角形の面積の最大値
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#九州大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$を実数とし、座標空間内の3点P(-1,1,-1), Q(1,1,1), R($a$, $a^2$, $a^3$)を考える。以下の問いに答えよ。
(1)$a$≠-1, $a$≠1 のとき、3点P,Q,Rは一直線上にないことを示せ。
(2)$a$が-1<$a$<1 の範囲を動くとき、三角形PQRの面積の最大値を求めよ。
この動画を見る
$\Large\boxed{1}$ $a$を実数とし、座標空間内の3点P(-1,1,-1), Q(1,1,1), R($a$, $a^2$, $a^3$)を考える。以下の問いに答えよ。
(1)$a$≠-1, $a$≠1 のとき、3点P,Q,Rは一直線上にないことを示せ。
(2)$a$が-1<$a$<1 の範囲を動くとき、三角形PQRの面積の最大値を求めよ。
福田のおもしろ数学163〜連続する奇数が互いに素である証明
大学入試問題#848「何種類か解法がありそう」 #宮崎大学(2023) #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{\sqrt{ 3 }}}^{\sqrt{ 3 }} \displaystyle \frac{1+x}{x(1+x^2)} dx$
出典:2023年宮崎大学
この動画を見る
$\displaystyle \int_{\frac{1}{\sqrt{ 3 }}}^{\sqrt{ 3 }} \displaystyle \frac{1+x}{x(1+x^2)} dx$
出典:2023年宮崎大学
福田の数学〜神戸大学2024年文系第2問〜さいころの目と約数に関する確率
単元:
#数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#神戸大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$で最小のものを求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$で最小のものを求めよ。
(3)1個のサイコロを3回投げて出た目の積が20の約数となる確率を求めよ。
この動画を見る
$\Large\boxed{2}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$で最小のものを求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$で最小のものを求めよ。
(3)1個のサイコロを3回投げて出た目の積が20の約数となる確率を求めよ。
マッチョは脳みそまで筋肉なのか?山本義徳先生に授業してみた~にこにこ算~
福田のおもしろ数学162〜式の値の計算
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$z$+$\displaystyle\frac{1}{z}$=1 のとき、$z^{2024}$+$\displaystyle\frac{1}{z^{2024}}$ の値を求めてください。
この動画を見る
$z$+$\displaystyle\frac{1}{z}$=1 のとき、$z^{2024}$+$\displaystyle\frac{1}{z^{2024}}$ の値を求めてください。
大学入試問題#847「もうネタ切れ寸前」 #青山学院大学(2006) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数Ⅲ#青山学院大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \{log(4-x^2)+2\} dx$
出典:2006年青山学院大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} \{log(4-x^2)+2\} dx$
出典:2006年青山学院大学 入試問題
福田の数学〜神戸大学2024年文系第1問〜3次関数で定義された数列
単元:
#数列#漸化式#神戸大学#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$\displaystyle\frac{1}{3}x^3$-10$x$ ($x$≧0)
が最小値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$\displaystyle\frac{1}{3}x^3$-100$a_nx$ ($x$≧0)
が最小値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_{10}a_n$ で定める。以下の問いに答えよ。
(1)$a_1$と$b_1$を求めよ。 (2)$a_{n+1}$を$a_n$を用いて表せ。
(3)$b_{n+1}$を$b_n$を用いて表せ。
(4)数列$\left\{b_n\right\}$の一般項を求めよ。
(5)$\displaystyle\frac{a_1a_2a_3}{100}$ の値を求めよ。
この動画を見る
$\Large\boxed{1}$ 各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$\displaystyle\frac{1}{3}x^3$-10$x$ ($x$≧0)
が最小値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$\displaystyle\frac{1}{3}x^3$-100$a_nx$ ($x$≧0)
が最小値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_{10}a_n$ で定める。以下の問いに答えよ。
(1)$a_1$と$b_1$を求めよ。 (2)$a_{n+1}$を$a_n$を用いて表せ。
(3)$b_{n+1}$を$b_n$を用いて表せ。
(4)数列$\left\{b_n\right\}$の一般項を求めよ。
(5)$\displaystyle\frac{a_1a_2a_3}{100}$ の値を求めよ。
【科目別】返ってきた模試の復習法~英語・数学・国語の勉強法
単元:
#その他#国語(中学生)#英語(高校生)#勉強法・その他#勉強法#勉強法#その他#その他・勉強法#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
勉強のやる気が出ないなら、今日試すべき勉強法
「模試の復習法」についてお話しています。
この動画を見る
勉強のやる気が出ないなら、今日試すべき勉強法
「模試の復習法」についてお話しています。
#自治医科大(2015)
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{1}{1+\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }+\sqrt{ 5 }}+\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 7 }}+\displaystyle \frac{1}{\sqrt{ 7 }+\sqrt{ 9 }}$
出典:2015年自治医科大学
この動画を見る
$\displaystyle \frac{1}{1+\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }+\sqrt{ 5 }}+\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 7 }}+\displaystyle \frac{1}{\sqrt{ 7 }+\sqrt{ 9 }}$
出典:2015年自治医科大学
福田のおもしろ数学161〜複雑な指数方程式の解
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
方程式$(4+\sqrt{15})^x-2(4-\sqrt{15})^x$=1 を解け。
この動画を見る
方程式$(4+\sqrt{15})^x-2(4-\sqrt{15})^x$=1 を解け。
大学入試問題#846「基本問題」 #岩手大学(2017) #極限
単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e$を利用して
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\tan x-\sin x}{x^4}\{log(x^2+x^3)-log\ x^2\}$を求めよ
出典:2017年岩手大学 入試問題
この動画を見る
$\displaystyle \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e$を利用して
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\tan x-\sin x}{x^4}\{log(x^2+x^3)-log\ x^2\}$を求めよ
出典:2017年岩手大学 入試問題
福田の数学〜神戸大学2024年理系第5問〜定積分で表された関数と不等式
単元:
#積分とその応用#定積分#神戸大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 0以上の実数$x$に対して、
$f(x)$=$\displaystyle\frac{1}{2}\int_{-x}^x\frac{1}{1+u^2}du$
と定める。以下の問いに答えよ。
(1)0≦$\alpha$<$\displaystyle\frac{\pi}{2}$ を満たす実数$\alpha$に対して、$f(\tan\alpha)$を求めよ。
(2)$xy$平面上で、次の連立不等式の表す領域を図示せよ。
0≦$x$≦1, 0≦$y$≦1, $f(x)$+$f(y)$≦$f(1)$
またその領域の面積を求めよ。
この動画を見る
$\Large\boxed{5}$ 0以上の実数$x$に対して、
$f(x)$=$\displaystyle\frac{1}{2}\int_{-x}^x\frac{1}{1+u^2}du$
と定める。以下の問いに答えよ。
(1)0≦$\alpha$<$\displaystyle\frac{\pi}{2}$ を満たす実数$\alpha$に対して、$f(\tan\alpha)$を求めよ。
(2)$xy$平面上で、次の連立不等式の表す領域を図示せよ。
0≦$x$≦1, 0≦$y$≦1, $f(x)$+$f(y)$≦$f(1)$
またその領域の面積を求めよ。
#広島市立大学(2013)
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \sin^9x \cos^3x\ dx$
出典:2013年広島市立大学
この動画を見る
$\displaystyle \int \sin^9x \cos^3x\ dx$
出典:2013年広島市立大学
福田のおもしろ数学160〜星のカピイは能力を何個持てるか
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
星のカピイは敵の能力をコピーできます。2つの能力を組み合わせて別の能力にすることもできます。(同じ能力を組み合わせることも可能)能力は全部で12種類あります。さてカピイは何個の能力を使うことができるでしょう。
この動画を見る
星のカピイは敵の能力をコピーできます。2つの能力を組み合わせて別の能力にすることもできます。(同じ能力を組み合わせることも可能)能力は全部で12種類あります。さてカピイは何個の能力を使うことができるでしょう。
大学入試問題#845「気持ち応用か!?」 #電気通信大学(2020) #区分求積法
単元:
#大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=n+1}^{2n} \displaystyle \frac{n}{k^2+3kn+2n^2}$
出典:2020年電気通信大学
この動画を見る
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=n+1}^{2n} \displaystyle \frac{n}{k^2+3kn+2n^2}$
出典:2020年電気通信大学
福田の数学〜神戸大学2024年理系第4問〜回転体の体積
単元:
#積分とその応用#面積・体積・長さ・速度#神戸大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 1辺の長さが$\sqrt 2$の正方形ABCDを底面にもち、高さが1である直方体ABCD-EFGHを、頂点の座標がそれぞれ
A(1,0,0), B(0,1,0), C(-1,0,0), D(0,-1,0),
E(1,0,1), F(0,1,1), G(-1,0,1), H(0,-1,1)
になるように$xyz$空間におく。以下の問いに答えよ。
(1)直方体ABCD-EFGHを直線AEのまわりに1回転してできる回転体を$X_1$とし、また直線ABのまわりに1回転してできる回転体を$X_2$とする。$X_1$の体積$V_1$と$X_2$の体積$V_2$を求めよ。
(2)0≦$t$≦1 とする。平面$x$=$t$と線分EFの共有点の座標を求めよ。
(3)直方体ABCD-EFGHを$x$軸のまわりに1回転してできる回転体を$X_3$とする。
$X_3$の体積$V_3$を求めよ。
この動画を見る
$\Large\boxed{4}$ 1辺の長さが$\sqrt 2$の正方形ABCDを底面にもち、高さが1である直方体ABCD-EFGHを、頂点の座標がそれぞれ
A(1,0,0), B(0,1,0), C(-1,0,0), D(0,-1,0),
E(1,0,1), F(0,1,1), G(-1,0,1), H(0,-1,1)
になるように$xyz$空間におく。以下の問いに答えよ。
(1)直方体ABCD-EFGHを直線AEのまわりに1回転してできる回転体を$X_1$とし、また直線ABのまわりに1回転してできる回転体を$X_2$とする。$X_1$の体積$V_1$と$X_2$の体積$V_2$を求めよ。
(2)0≦$t$≦1 とする。平面$x$=$t$と線分EFの共有点の座標を求めよ。
(3)直方体ABCD-EFGHを$x$軸のまわりに1回転してできる回転体を$X_3$とする。
$X_3$の体積$V_3$を求めよ。
【高校数学】三角関数を用いる積分(応用編)【数学のコツ】
#高知工科大学(2021)
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#高知工科大学
指導講師:
ますただ
問題文全文(内容文):
$49^=(\displaystyle \frac{1}{343})^{x+1}$を解け
出典:2021年高知工科大学
この動画を見る
$49^=(\displaystyle \frac{1}{343})^{x+1}$を解け
出典:2021年高知工科大学
福田のおもしろ数学159〜俳句はスパコンとAIで終了してしまうのか
大学入試問題#844「まあ基本・・・」 #電気通信大学(2015) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\sin x)(\sin 2x)(\sin 3x) dx$
出典:2015年電気通信大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\sin x)(\sin 2x)(\sin 3x) dx$
出典:2015年電気通信大学 入試問題
福田の数学〜神戸大学2024年理系第3問〜さいころの目と約数に関する確率
単元:
#数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$を小さい順に3つ求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$を小さい順に3つ求めよ。
(3)1個のサイコロを3回投げて出た目の積が160の約数となる確率を求めよ。
この動画を見る
$\Large\boxed{3}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$を小さい順に3つ求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$を小さい順に3つ求めよ。
(3)1個のサイコロを3回投げて出た目の積が160の約数となる確率を求めよ。
#大阪医科大学(2014) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} x \sin n \pi \ x\ dx$
$n$:自然数
出典:2014年大阪医科大学
この動画を見る
$\displaystyle \int_{-1}^{1} x \sin n \pi \ x\ dx$
$n$:自然数
出典:2014年大阪医科大学
福田のおもしろ数学158〜無理不等式と同値変形
単元:
#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
不等式$\sqrt{2x+1}$≧$x$-1 ...(*)を
(1)同値変形することで解け。 (2)グラフを利用して解け。
この動画を見る
不等式$\sqrt{2x+1}$≧$x$-1 ...(*)を
(1)同値変形することで解け。 (2)グラフを利用して解け。
大学入試問題#843「解き方色々ありそう」 #筑波大学(2013) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{\sin x \cos x} dx$
出典:2013年筑波大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{1}{\sin x \cos x} dx$
出典:2013年筑波大学 入試問題
福田の数学〜神戸大学2024年理系第2問〜放物線と2接線た作る三角形の重心の軌跡
単元:
#数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#面積、体積#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$, $b$, $c$は実数で、$a$≠0とする。放物線$C$と直線$l_1$, $l_2$をそれぞれ
$C$:$y$=$ax^2$+$bx$+$c$
$l_1$:$y$=$-3x$+3
$l_2$:$y$=$x$+3
で定める。$l_1$, $l_2$がともに$C$と接するとき、以下の問いに答えよ。
(1)$b$を求めよ。$c$を$a$を用いて表せ。
(2)$C$が$x$軸と異なる2点で交わるとき、$\displaystyle\frac{1}{a}$のとりうる値の範囲を求めよ。
(3)$C$と$l_1$の接点をP、$C$と$l_2$の接点をQ、放物線$C$の頂点をRとする。$a$が(2)の条件を満たしながら動くとき、$\triangle PQR$の重心Gの軌跡を求めよ。
この動画を見る
$\Large\boxed{3}$ $a$, $b$, $c$は実数で、$a$≠0とする。放物線$C$と直線$l_1$, $l_2$をそれぞれ
$C$:$y$=$ax^2$+$bx$+$c$
$l_1$:$y$=$-3x$+3
$l_2$:$y$=$x$+3
で定める。$l_1$, $l_2$がともに$C$と接するとき、以下の問いに答えよ。
(1)$b$を求めよ。$c$を$a$を用いて表せ。
(2)$C$が$x$軸と異なる2点で交わるとき、$\displaystyle\frac{1}{a}$のとりうる値の範囲を求めよ。
(3)$C$と$l_1$の接点をP、$C$と$l_2$の接点をQ、放物線$C$の頂点をRとする。$a$が(2)の条件を満たしながら動くとき、$\triangle PQR$の重心Gの軌跡を求めよ。
#大阪医科大学2014
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \sin^2 n\pi \ x \ dx$
$n:$自然数
出典:2014年大阪医科大学
この動画を見る
$\displaystyle \int_{-1}^{1} \sin^2 n\pi \ x \ dx$
$n:$自然数
出典:2014年大阪医科大学
福田のおもしろ数学157〜3変数の不定方程式の自然数解
単元:
#数Ⅰ#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$7(x+y+z)$=$2(xy+yz+zx)$ を満たす自然数$x$, $y$, $z$($x$≦$y$≦$z$)を求めよ。
この動画を見る
$7(x+y+z)$=$2(xy+yz+zx)$ を満たす自然数$x$, $y$, $z$($x$≦$y$≦$z$)を求めよ。
大学入試問題#842「公式は使っていません」 #電気通信大学(2018) #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (1+x)^4(1-x)^2 dx$
出典:2018年電気通信大学 入試問題
この動画を見る
$\displaystyle \int_{-1}^{1} (1+x)^4(1-x)^2 dx$
出典:2018年電気通信大学 入試問題
福田の数学〜神戸大学2024年理系第1問〜無理関数を利用して定義された数列の一般項
単元:
#数列#数列とその和(等差・等比・階差・Σ)#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $c$を正の実数とする。各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$x$+$\sqrt{c-x^2}$ (0≦$x$≦$\sqrt c$)
が最大値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$x$+$\sqrt{a_n-x^2}$ (0≦$x$≦$\sqrt{a_n}$)
が最大値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_2a_n$ で定める。以下の問いに答えよ。
(1)$a_1$を$c$を用いて表せ。
(2)$b_{n+1}$を$b_n$を用いて表せ。
(3)数列$\left\{b_n\right\}$の一般項を$n$と$c$を用いて表せ。
この動画を見る
$\Large\boxed{1}$ $c$を正の実数とする。各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$x$+$\sqrt{c-x^2}$ (0≦$x$≦$\sqrt c$)
が最大値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$x$+$\sqrt{a_n-x^2}$ (0≦$x$≦$\sqrt{a_n}$)
が最大値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_2a_n$ で定める。以下の問いに答えよ。
(1)$a_1$を$c$を用いて表せ。
(2)$b_{n+1}$を$b_n$を用いて表せ。
(3)数列$\left\{b_n\right\}$の一般項を$n$と$c$を用いて表せ。