数学(高校生)
大学入試問題#829「綺麗な詰将棋!」 #筑波大学(2016) #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-1}{x^3+1} dx$
出典:2016年筑波大学
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-1}{x^3+1} dx$
出典:2016年筑波大学
福田の数学〜名古屋大学2024年理系第2問〜3次方程式の共通解と複素数平面
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $c$を1より大きい実数とする。また、$i$を虚数単位として、$\alpha$=$\displaystyle\frac{1-i}{\sqrt 2}$ とおく。
複素数$z$に対して、
$P(z)$=$z^3$-$3z^2$+$(c+2)z$-$c$, $Q(z)$=$-\alpha^7z^3$+$3\alpha^6z^2$+$(c+2)\alpha z$-$c$
と定める。
(1)方程式$P(z)$=0を満たす複素数$z$をすべて求め、それらを複素数平面上に図示せよ。
(2)方程式$Q(z)$=0を満たす複素数$z$のうち実部が最大のものを求めよ。
(3)複素数$z$についての2つの方程式$P(z)$=0, $Q(z)$=0が共通解$\beta$を持つとする。そのときの$c$の値と$\beta$を求めよ。
この動画を見る
$\Large\boxed{2}$ $c$を1より大きい実数とする。また、$i$を虚数単位として、$\alpha$=$\displaystyle\frac{1-i}{\sqrt 2}$ とおく。
複素数$z$に対して、
$P(z)$=$z^3$-$3z^2$+$(c+2)z$-$c$, $Q(z)$=$-\alpha^7z^3$+$3\alpha^6z^2$+$(c+2)\alpha z$-$c$
と定める。
(1)方程式$P(z)$=0を満たす複素数$z$をすべて求め、それらを複素数平面上に図示せよ。
(2)方程式$Q(z)$=0を満たす複素数$z$のうち実部が最大のものを求めよ。
(3)複素数$z$についての2つの方程式$P(z)$=0, $Q(z)$=0が共通解$\beta$を持つとする。そのときの$c$の値と$\beta$を求めよ。
#立教大学(2010) #定積分 #Shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{2x^3}{1+x^2} dx$
出典:2010年立教大学
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{2x^3}{1+x^2} dx$
出典:2010年立教大学
#岩手大学(2019) #定積分 #Shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3} \displaystyle \frac{x}{(4-x)^3} dx$
出典:2019年岩手大学
この動画を見る
$\displaystyle \int_{0}^{3} \displaystyle \frac{x}{(4-x)^3} dx$
出典:2019年岩手大学
大学入試問題#828「式変形難しめの良問!」 #久留米大学医学部(2024) #数列
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n \displaystyle \frac{3k+5}{(3k-1)(3k+2)2^{k+1}}$
出典:2024年久留米大学医学部
この動画を見る
$\displaystyle \sum_{k=1}^n \displaystyle \frac{3k+5}{(3k-1)(3k+2)2^{k+1}}$
出典:2024年久留米大学医学部
福田の数学〜名古屋大学2024年理系第1問〜接線の本数と整数解
単元:
#微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$=$\sqrt x$+$\displaystyle\frac{2}{\sqrt x}$ ($x$>0)に対して、$y$=$f(x)$のグラフを$C$とする。
(1)$f(x)$の極値を求めよ。
(2)$x$軸上の点P($t$, 0)から$C$にちょうど2本の接線を引くことができるとする。
そのような実数$t$の値の範囲を求めよ。
(3)(2)において、$C$の2つの接点の$x$座標を$\alpha$, $\beta$($\alpha$<$\beta$)とする。$\alpha$, $\beta$がともに整数であるような組($\alpha$, $\beta$)をすべて求めよ。
この動画を見る
$\Large\boxed{1}$ 関数$f(x)$=$\sqrt x$+$\displaystyle\frac{2}{\sqrt x}$ ($x$>0)に対して、$y$=$f(x)$のグラフを$C$とする。
(1)$f(x)$の極値を求めよ。
(2)$x$軸上の点P($t$, 0)から$C$にちょうど2本の接線を引くことができるとする。
そのような実数$t$の値の範囲を求めよ。
(3)(2)において、$C$の2つの接点の$x$座標を$\alpha$, $\beta$($\alpha$<$\beta$)とする。$\alpha$, $\beta$がともに整数であるような組($\alpha$, $\beta$)をすべて求めよ。
#東京都市大学(2010) #不定積分 #Shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int xe^{x^2} dx$
出典:2010年東京都市大学
この動画を見る
$\displaystyle \int xe^{x^2} dx$
出典:2010年東京都市大学
10回連続表なら次は裏なのか?
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
コインが10回連続表なら次は裏がでますか?
この動画を見る
下記質問の解説動画です
コインが10回連続表なら次は裏がでますか?
#岩手大学(2019) #極限 #Shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{3x^2-1}{2x+1}\sin\displaystyle \frac{2}{x}$
出典:2019年岩手大学
この動画を見る
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{3x^2-1}{2x+1}\sin\displaystyle \frac{2}{x}$
出典:2019年岩手大学
福田のおもしろ数学146〜3m+5nで作れない自然数を求める
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$X$=$3m$+$5n$ ($m$, $n$は0以上の整数)の形で表せない自然数$X$を全て求めよ。
この動画を見る
$X$=$3m$+$5n$ ($m$, $n$は0以上の整数)の形で表せない自然数$X$を全て求めよ。
大学入試問題#827「とりま絶対値はずそ:0≦t≦π/2」 #筑波大学(2020) #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-\sin\ t\ |\ dx$
出典:2020年筑波大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-\sin\ t\ |\ dx$
出典:2020年筑波大学
福田の数学〜慶應義塾大学2024年商学部第4問〜くじ引きと条件付き確率
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ あるくじ引き店には、くじが10本入っている箱が5箱ある。5箱のうち4箱には当たりくじが1本、はずれくじが9本入っており、この4箱を「通常の箱」と呼ぶ。また、残りの1箱には当たりくじが5本、はずれくじが5本入っており、この箱を「有利な箱」と呼ぶ。通常の箱と有利な箱は見た目は同じであり、見分けることはできない。
(i)まず、Aが店に入り、5箱のうちの1箱を無作為に選び、その箱からくじを1本引いた。Aの選んだ箱が通常の箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。また、Aの選んだ箱が有利な箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{オ}}{\boxed{カキ}}$である。したがって、Aの引いたくじがはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{ク}}{\boxed{ケコ}}$である。
(ii)(i)の後、Aは引いたくじをもとの箱に戻し、よくかき混ぜたあと、同じ箱からもう一度くじを1本引いた。Aの引いたくじが1回目、2回目ともにはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
(iii)(ii)の後、Aは引いたくじをもとの箱に戻して店を出た。その後、BとCが店に入った。Bは5箱のうち1箱を無作為に選び、CはBが選ばなかった4箱の中から1箱を無作為に選んだ。BはAと同じように、自分の選んだ箱からくじを1本引き、それをもとの箱に戻し、よくかき混ぜた後、同じ箱からもう一度くじを1本引いた。また、Cは自分の選んだ箱からくじを1本引いた。Bの引いたくじが1回目、2回目ともにはずれであり、かつ、Cが引いたくじが当たりであったときに、Bの選んだ箱が有利な箱である確率は$\frac{\boxed{タチ}}{\boxed{ツテト}}$であり、Cの選んだ箱が有利な箱である確率は$\frac{\boxed{ナニヌ}}{\boxed{ネノハ}}$である。
この動画を見る
$\Large\boxed{4}$ あるくじ引き店には、くじが10本入っている箱が5箱ある。5箱のうち4箱には当たりくじが1本、はずれくじが9本入っており、この4箱を「通常の箱」と呼ぶ。また、残りの1箱には当たりくじが5本、はずれくじが5本入っており、この箱を「有利な箱」と呼ぶ。通常の箱と有利な箱は見た目は同じであり、見分けることはできない。
(i)まず、Aが店に入り、5箱のうちの1箱を無作為に選び、その箱からくじを1本引いた。Aの選んだ箱が通常の箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。また、Aの選んだ箱が有利な箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{オ}}{\boxed{カキ}}$である。したがって、Aの引いたくじがはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{ク}}{\boxed{ケコ}}$である。
(ii)(i)の後、Aは引いたくじをもとの箱に戻し、よくかき混ぜたあと、同じ箱からもう一度くじを1本引いた。Aの引いたくじが1回目、2回目ともにはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
(iii)(ii)の後、Aは引いたくじをもとの箱に戻して店を出た。その後、BとCが店に入った。Bは5箱のうち1箱を無作為に選び、CはBが選ばなかった4箱の中から1箱を無作為に選んだ。BはAと同じように、自分の選んだ箱からくじを1本引き、それをもとの箱に戻し、よくかき混ぜた後、同じ箱からもう一度くじを1本引いた。また、Cは自分の選んだ箱からくじを1本引いた。Bの引いたくじが1回目、2回目ともにはずれであり、かつ、Cが引いたくじが当たりであったときに、Bの選んだ箱が有利な箱である確率は$\frac{\boxed{タチ}}{\boxed{ツテト}}$であり、Cの選んだ箱が有利な箱である確率は$\frac{\boxed{ナニヌ}}{\boxed{ネノハ}}$である。
この手があったか!分母の有理化
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{21}{\sqrt 7}=$
この動画を見る
$\frac{21}{\sqrt 7}=$
#岩手大学(2018) #定積分 #Shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} x^3log\ x\ dx$
出典:2018年岩手大学
この動画を見る
$\displaystyle \int_{1}^{e} x^3log\ x\ dx$
出典:2018年岩手大学
#筑波大学(2016) #定積分 #Shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3x\ dx$
出典:2016年筑波大学
この動画を見る
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3x\ dx$
出典:2016年筑波大学
福田のおもしろ数学145〜無理数の計算をうまくする方法
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\left(\frac{\sqrt 5+\sqrt 3-\sqrt 2}{\sqrt 2}\right)^4$+$\displaystyle\left(\frac{\sqrt 5-\sqrt 3+\sqrt 2}{\sqrt 2}\right)^4$ を計算せよ。
この動画を見る
$\displaystyle\left(\frac{\sqrt 5+\sqrt 3-\sqrt 2}{\sqrt 2}\right)^4$+$\displaystyle\left(\frac{\sqrt 5-\sqrt 3+\sqrt 2}{\sqrt 2}\right)^4$ を計算せよ。
大学入試問題#826「尺の関係で、解法2つ紹介!」 #筑波大学(2019) #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \displaystyle \frac{1}{\tan^2x} dx$
出典:2019年筑波大学
この動画を見る
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \displaystyle \frac{1}{\tan^2x} dx$
出典:2019年筑波大学
福田の数学〜慶應義塾大学2024年商学部第3問〜放物線と三角形の面積の最大
単元:
#数Ⅱ#微分法と積分法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)$=$\displaystyle-\frac{1}{8}x^2$+$5x$+18 とし、放物線$C$:$y$=$f(x)$と2つの直線$l_1$:$y$=$-x$, $l_2$:$y$=$x$ を考える。$C$と$l_1$の共有点のうち$x$座標が負のものをAとし、$C$と$l_2$の共有点のうち$x$座標が正のものをBとする。また、Aの$x$座標を$a$、Bの$x$座標を$b$とする。
(i)$a$=$\boxed{アイ}$-$\boxed{ウエ}\sqrt{\boxed{オ}}$, $a$=$\boxed{カキ}$である。
(ii)$C$と$l_2$で囲まれた部分のうち、$x$≧0の範囲にあるものの面積は$\boxed{クケコサ}$である。
以下、Pを$C$上の点とし、Pの$x$座標を$p$とする。またPにおける$C$の接線と$y$軸の交点をDとする。
(iii)$p$が0<$p$<$b$の範囲を動くとき、△ABPの面積が最大になるのは
$p$=$\boxed{シス}$-$\boxed{セ}\sqrt{\boxed{ソ}}$ のときである。
(iv)$p$=8 のとき、Dの$y$座標は$\boxed{タチ}$ である。
(v)$p$が0<$p$<$b$の範囲を動くとき、△BDPの面積$S$が最大になるのは
$p$=$\boxed{ツテ}$ のときであり、そのときの$S$は$\boxed{トナニ}$である。
この動画を見る
$\Large\boxed{3}$ $f(x)$=$\displaystyle-\frac{1}{8}x^2$+$5x$+18 とし、放物線$C$:$y$=$f(x)$と2つの直線$l_1$:$y$=$-x$, $l_2$:$y$=$x$ を考える。$C$と$l_1$の共有点のうち$x$座標が負のものをAとし、$C$と$l_2$の共有点のうち$x$座標が正のものをBとする。また、Aの$x$座標を$a$、Bの$x$座標を$b$とする。
(i)$a$=$\boxed{アイ}$-$\boxed{ウエ}\sqrt{\boxed{オ}}$, $a$=$\boxed{カキ}$である。
(ii)$C$と$l_2$で囲まれた部分のうち、$x$≧0の範囲にあるものの面積は$\boxed{クケコサ}$である。
以下、Pを$C$上の点とし、Pの$x$座標を$p$とする。またPにおける$C$の接線と$y$軸の交点をDとする。
(iii)$p$が0<$p$<$b$の範囲を動くとき、△ABPの面積が最大になるのは
$p$=$\boxed{シス}$-$\boxed{セ}\sqrt{\boxed{ソ}}$ のときである。
(iv)$p$=8 のとき、Dの$y$座標は$\boxed{タチ}$ である。
(v)$p$が0<$p$<$b$の範囲を動くとき、△BDPの面積$S$が最大になるのは
$p$=$\boxed{ツテ}$ のときであり、そのときの$S$は$\boxed{トナニ}$である。
分母の有理化
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{18}{\sqrt 6}$
この動画を見る
$\frac{18}{\sqrt 6}$
#上智大学(2014) #極限 #Shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ u \to \infty } \displaystyle \int_{o}^{u} te^{-t} \ dt$
出典:2014年上智大学
この動画を見る
$\displaystyle \lim_{ u \to \infty } \displaystyle \int_{o}^{u} te^{-t} \ dt$
出典:2014年上智大学
三角関数 数 三角関数の不等式2【NI・SHI・NOがていねいに解説】
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\sin (θ+\displaystyle \frac{π}{4})\leqq \displaystyle \frac{\sqrt{3}}{2}$
(2) $\tan (θ-\displaystyle \frac{π}{6})\gt 1$
(3) $\cos (θ-\displaystyle \frac{π}{3})\lt -\displaystyle \frac{\sqrt{3}}{2}$
(4) $\tan (θ+\displaystyle \frac{π}{6})\geqq -\sqrt{3}$
この動画を見る
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\sin (θ+\displaystyle \frac{π}{4})\leqq \displaystyle \frac{\sqrt{3}}{2}$
(2) $\tan (θ-\displaystyle \frac{π}{6})\gt 1$
(3) $\cos (θ-\displaystyle \frac{π}{3})\lt -\displaystyle \frac{\sqrt{3}}{2}$
(4) $\tan (θ+\displaystyle \frac{π}{6})\geqq -\sqrt{3}$
#筑波大学(2016) #定積分 #Shorts
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{2}}^{2} |log\ x| dx$
出典:2016年筑波大学
この動画を見る
$\displaystyle \int_{\frac{1}{2}}^{2} |log\ x| dx$
出典:2016年筑波大学
福田のおもしろ数学144〜連続する6個の自然数を積の等しい2グループに分けられない証明
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
この動画を見る
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
大学入試問題#825「まあまあ良問」 #茨城大学(2022) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-7}^{1}(2-x) \sqrt[ 3 ]{ 1-x }\ dx$
出典:2022年茨城大学
この動画を見る
$\displaystyle \int_{-7}^{1}(2-x) \sqrt[ 3 ]{ 1-x }\ dx$
出典:2022年茨城大学
福田の数学〜慶應義塾大学2024年商学部第2問(4)〜領域と集合の要素の個数
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (4)$xy$平面上で、不等式$x$≦5 の表す領域を$A$, 不等式$x$+$y$≧10 の表す領域を$B$とする。また、$xy$平面上の点の集合$S$は以下の3つの条件をすべて満たす。
(条件1)$S$に含まれるどの点も、その$x$座標と$y$座標はともに1以上10以下の自然数である。
(条件2)$S$の要素で領域$A$に含まれるものは、領域$B$に含まれる。
(条件3)$S$の要素で領域$B$に含まれるものは、領域$A$に含まれる。
$S$を、条件1~3を満たす中で要素の個数が最大のものとするとき、その要素の個数は$\boxed{シス}$である。
この動画を見る
$\Large\boxed{2}$ (4)$xy$平面上で、不等式$x$≦5 の表す領域を$A$, 不等式$x$+$y$≧10 の表す領域を$B$とする。また、$xy$平面上の点の集合$S$は以下の3つの条件をすべて満たす。
(条件1)$S$に含まれるどの点も、その$x$座標と$y$座標はともに1以上10以下の自然数である。
(条件2)$S$の要素で領域$A$に含まれるものは、領域$B$に含まれる。
(条件3)$S$の要素で領域$B$に含まれるものは、領域$A$に含まれる。
$S$を、条件1~3を満たす中で要素の個数が最大のものとするとき、その要素の個数は$\boxed{シス}$である。
#秋田大学(2019) #定積分 #Shorts
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#秋田大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2} \displaystyle \frac{1}{x\ log\ x} dx$
出典:2019年秋田大学
この動画を見る
$\displaystyle \int_{e}^{e^2} \displaystyle \frac{1}{x\ log\ x} dx$
出典:2019年秋田大学
【高校数学】全て覚える必要はない!?三角関数の性質のコツ【数学のコツ】
#岩手大学(2013) #極限 #Shorts
単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sqrt{ 3x+4 }-2}{\sin3x}$
出典:2013年岩手大学
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sqrt{ 3x+4 }-2}{\sin3x}$
出典:2013年岩手大学
福田のおもしろ数学143〜斜面の勾配
単元:
#数学(中学生)#中3数学#大学入試過去問(数学)#三平方の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
傾いた平面上で、もっとも急な方向の勾配(傾き)が$\frac{1}{3}$であるという。いま南北方向の勾配を測ったところ$\frac{1}{5}$であった。
東西方向の勾配はどれだけか。
この動画を見る
傾いた平面上で、もっとも急な方向の勾配(傾き)が$\frac{1}{3}$であるという。いま南北方向の勾配を測ったところ$\frac{1}{5}$であった。
東西方向の勾配はどれだけか。