数学(高校生)
数学(高校生)
福田の数学〜慶應義塾大学看護医療学部2025第1問(4)〜三角関数の最大

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(4)関数$y=(2\sin 2x+\sin x)+\sin x (0\leqq x \lt 2\pi)$は、
$x=\boxed{オ}$のとき最大値$\boxed{カ}$をとる。
$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る
$\boxed{1}$
(4)関数$y=(2\sin 2x+\sin x)+\sin x (0\leqq x \lt 2\pi)$は、
$x=\boxed{オ}$のとき最大値$\boxed{カ}$をとる。
$2025$年慶應義塾大学看護医療学部過去問題
福田のおもしろ数学481〜長方形が15°ずつ傾いてずれていく

福田の数学〜慶應義塾大学看護医療学部2025第1問(3)〜反復試行の確率と条件付き確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(3)さいころを$6$回続けて投げる。
$3$の倍数の目が出る回数が$2$になる確率は
$\boxed{ウ}$である。
また、$3$の倍数の目が出た回数が$2$であったとき、
その$2$回が続けて起こる条件付き確率は$\boxed{エ}$である。
$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る
$\boxed{1}$
(3)さいころを$6$回続けて投げる。
$3$の倍数の目が出る回数が$2$になる確率は
$\boxed{ウ}$である。
また、$3$の倍数の目が出た回数が$2$であったとき、
その$2$回が続けて起こる条件付き確率は$\boxed{エ}$である。
$2025$年慶應義塾大学看護医療学部過去問題
【数B】【数列】数学的帰納法4 ※問題文は概要欄

単元:
#数列#漸化式#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
条件$a_1=3,{a_n}^2=(n+1)a_{n+1}+1$
によって定められる数列$\{a_n\}$がある。
(1) $a_2,a_3,a_4$を求めよ。
(2) 第$n$項$a_n$を推測して、
その結果を数学的帰納法によって証明せよ。
この動画を見る
条件$a_1=3,{a_n}^2=(n+1)a_{n+1}+1$
によって定められる数列$\{a_n\}$がある。
(1) $a_2,a_3,a_4$を求めよ。
(2) 第$n$項$a_n$を推測して、
その結果を数学的帰納法によって証明せよ。
【数B】【数列】数学的帰納法3 ※問題文は概要欄

単元:
#数列#漸化式#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) $n$は自然数とする。
$5^{n+1}+6^{2n-1}$は31で割り切れることを、
数学的帰納法によって証明せよ。
(2) $n$は2以上の自然数とする。
$2^{3n}-7n-1$は49で割り切れることを、
数学的帰納法によって証明せよ。
この動画を見る
(1) $n$は自然数とする。
$5^{n+1}+6^{2n-1}$は31で割り切れることを、
数学的帰納法によって証明せよ。
(2) $n$は2以上の自然数とする。
$2^{3n}-7n-1$は49で割り切れることを、
数学的帰納法によって証明せよ。
【数B】【数列】数学的帰納法2 ※問題文は概要欄

単元:
#数列#漸化式#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
数学的帰納法によって次の不等式を証明せよ。
(1) $n$が自然数のとき$1^2+2^2+3^2+\cdots+n^2< \dfrac{(n+1)^3}3$
(2) $n$が4以上の自然数のとき$2^n>3n+1$
(3) $n$が3以上の自然数、$h>0$のとき$(1+h)^n> 1+nh^2$
この動画を見る
数学的帰納法によって次の不等式を証明せよ。
(1) $n$が自然数のとき$1^2+2^2+3^2+\cdots+n^2< \dfrac{(n+1)^3}3$
(2) $n$が4以上の自然数のとき$2^n>3n+1$
(3) $n$が3以上の自然数、$h>0$のとき$(1+h)^n> 1+nh^2$
【数B】【数列】数学的帰納法1 ※問題文は概要欄

単元:
#数列#漸化式#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
$n$は自然数とする。数学的帰納法によって、次の等式を証明せよ。
(1) $1+2\cdot\dfrac32+\cdots+n(\dfrac32)^{n-1}=2(n-2)(\dfrac32)^n+4$
(2) $(n+1)(n+2)(n+3)\cdots(2n)=2^n\cdot1\cdot3\cdot5\cdots(2n-1)$
この動画を見る
$n$は自然数とする。数学的帰納法によって、次の等式を証明せよ。
(1) $1+2\cdot\dfrac32+\cdots+n(\dfrac32)^{n-1}=2(n-2)(\dfrac32)^n+4$
(2) $(n+1)(n+2)(n+3)\cdots(2n)=2^n\cdot1\cdot3\cdot5\cdots(2n-1)$
1都3県のFラン大学一覧 #shorts

単元:
#大学入試過去問(数学)#物理#化学#生物#学校別大学入試過去問解説(数学)#大学入試過去問(物理)#大学入試過去問(化学)#英語(高校生)#国語(高校生)#大学入試過去問(英語)#大学入試過去問(国語)#学校別大学入試過去問解説(英語)#大学入試過去問(生物)#数学(高校生)#理科(高校生)
指導講師:
Morite2 English Channel
問題文全文(内容文):
速報!2025年最新版、1都3県のヤバすぎるFラン大学リストが公開され、受験界騒然!まさかのあの大学の名前が並んでいるぞ。
このリストには、人気クリエイターの藤川天が過去に**不合格になった大学**が続々登場している。具体的には、火越大学、神奈川歯科大学、そして埼玉工業大学が、藤川天が受験して落ちた場所として挙げられている。
リストには他にも、上野学園大学や東京女学館大学といった「もうなくなった」大学の名前も含まれている。また、東京音楽大学のような大学は、判定できない「別枠」としてリストに登場しているが、これには賛否の声もあるようだ。
特にネットで話題を呼んでいるのが、フェリス女学院大学のランクイン。慶応とインカレしているイメージがあるのに、こんなに下なの!?と驚きの声が上がっている。さらに、アニメや映画で架空の大学名として使われる「東都大学」が実在していたという衝撃の事実も判明したぞ。
この動画を見る
速報!2025年最新版、1都3県のヤバすぎるFラン大学リストが公開され、受験界騒然!まさかのあの大学の名前が並んでいるぞ。
このリストには、人気クリエイターの藤川天が過去に**不合格になった大学**が続々登場している。具体的には、火越大学、神奈川歯科大学、そして埼玉工業大学が、藤川天が受験して落ちた場所として挙げられている。
リストには他にも、上野学園大学や東京女学館大学といった「もうなくなった」大学の名前も含まれている。また、東京音楽大学のような大学は、判定できない「別枠」としてリストに登場しているが、これには賛否の声もあるようだ。
特にネットで話題を呼んでいるのが、フェリス女学院大学のランクイン。慶応とインカレしているイメージがあるのに、こんなに下なの!?と驚きの声が上がっている。さらに、アニメや映画で架空の大学名として使われる「東都大学」が実在していたという衝撃の事実も判明したぞ。
福田のおもしろ数学480〜三角関数の不等式の証明とイェンゼンの不等式

単元:
#数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$0\leqq \alpha,\beta \gamma \lt 90°$
$\sin \alpha +\sin \beta +\sin \gamma =1$のとき
$\tan^2\alpha+\tan^2\beta+\tan^2\gamma \geqq\dfrac{3}{8}$
を証明して下さい。
この動画を見る
$0\leqq \alpha,\beta \gamma \lt 90°$
$\sin \alpha +\sin \beta +\sin \gamma =1$のとき
$\tan^2\alpha+\tan^2\beta+\tan^2\gamma \geqq\dfrac{3}{8}$
を証明して下さい。
福田の数学〜慶應義塾大学看護医療学部2025第1問(2)〜対数不等式

単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)不等式$2(\log_3 x)^2+2\log_9 x \gt 1$を解くと
$\boxed{イ}$である。
$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る
$\boxed{1}$
(2)不等式$2(\log_3 x)^2+2\log_9 x \gt 1$を解くと
$\boxed{イ}$である。
$2025$年慶應義塾大学看護医療学部過去問題
福田のおもしろ数学479〜ちょうど9回でゲームが終了する確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
コインを投げて表が出れば$1$点獲得し、裏が出たら
$2$点を失う。
コインを繰り返し投げて、持ち点が$1$点以下になれば
終了するゲームをする。
最初$10$点をもち、ゲームを始めて$9$回目にゲームが
終了する確率を求めて下さい。
この動画を見る
コインを投げて表が出れば$1$点獲得し、裏が出たら
$2$点を失う。
コインを繰り返し投げて、持ち点が$1$点以下になれば
終了するゲームをする。
最初$10$点をもち、ゲームを始めて$9$回目にゲームが
終了する確率を求めて下さい。
福田の数学〜慶應義塾大学看護医療学部2025第1問(1)〜分母の有理化

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)$\dfrac{1}{\sqrt2+\sqrt3+\sqrt5}$の分母を有理化すると
$\boxed{ア}$である。
〈追加問題〉
$\dfrac{1}{\sqrt2+\sqrt3+\sqrt5+\sqrt6}$の分母を有理化すると
$\Box$である。
$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る
$\boxed{1}$
(1)$\dfrac{1}{\sqrt2+\sqrt3+\sqrt5}$の分母を有理化すると
$\boxed{ア}$である。
〈追加問題〉
$\dfrac{1}{\sqrt2+\sqrt3+\sqrt5+\sqrt6}$の分母を有理化すると
$\Box$である。
$2025$年慶應義塾大学看護医療学部過去問題
福田のおもしろ数学478〜不等式の証明

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a,b,c$を正の数とする。
$a^2+b^2+c^2=3$のとき
$\dfrac{1}{1+2ab}+\dfrac{1}{1+2bc}+\dfrac{1}{1+2ca} \geqq 1$
を証明して下さい。
この動画を見る
$a,b,c$を正の数とする。
$a^2+b^2+c^2=3$のとき
$\dfrac{1}{1+2ab}+\dfrac{1}{1+2bc}+\dfrac{1}{1+2ca} \geqq 1$
を証明して下さい。
福田の数学〜早稲田大学理工学部2025第5問〜無理関数のグラフ上に無数の有理点が存在する証明

単元:
#大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
$xy$平面上の曲線$C:y=\sqrt[3]{x^2+2}$と考え、
$C$上の$(0,\sqrt[3]{2})$以外の点$P(a,b)$における接線を
$\ell : y = kx +c$と表す。$C$と$\ell$の方程式から
$x$を消去して得られる$y$についての$3$次方程式
$f(y)=0$は$b$を重解としてもつので、もう$1$つの解を
$b'$とする。
ただし、$b'$が$3$重解のときは$b'=b$とみなす。
次の問いに答えよ。
(1)$2b+b'$を$k$のみの分数式で表せ。
(2)$b'$を$b$のみの分数式で表せ。
(3)$C$と$\ell$の共有点で、その$y$座標が$b'$であるものを
$P'(a',b')$とする。
$a$と$b$が有理数ならば、$a'$と$b'$も有理数であることを
示せ。
(4)$b$が奇数$p,q$と負でない整数$r$を用いて
$b=\dfrac{p}{2^r q}$で与えられるとする。
有理数$b'$を奇数$p',q'$と整数$s$を用いて$b'=\dfrac{p'}{2^s q'}$と
表すとき、$s$を$r$の式で表せ。
(5)$P(5,3)$が曲線$C$上の点であることを利用して、
$C$上に$x$座標と$y$座標がともに有理数であるような点が
無数に存在することを示せ。
$2025$年早稲田大学理工学部過去問題
この動画を見る
$\boxed{5}$
$xy$平面上の曲線$C:y=\sqrt[3]{x^2+2}$と考え、
$C$上の$(0,\sqrt[3]{2})$以外の点$P(a,b)$における接線を
$\ell : y = kx +c$と表す。$C$と$\ell$の方程式から
$x$を消去して得られる$y$についての$3$次方程式
$f(y)=0$は$b$を重解としてもつので、もう$1$つの解を
$b'$とする。
ただし、$b'$が$3$重解のときは$b'=b$とみなす。
次の問いに答えよ。
(1)$2b+b'$を$k$のみの分数式で表せ。
(2)$b'$を$b$のみの分数式で表せ。
(3)$C$と$\ell$の共有点で、その$y$座標が$b'$であるものを
$P'(a',b')$とする。
$a$と$b$が有理数ならば、$a'$と$b'$も有理数であることを
示せ。
(4)$b$が奇数$p,q$と負でない整数$r$を用いて
$b=\dfrac{p}{2^r q}$で与えられるとする。
有理数$b'$を奇数$p',q'$と整数$s$を用いて$b'=\dfrac{p'}{2^s q'}$と
表すとき、$s$を$r$の式で表せ。
(5)$P(5,3)$が曲線$C$上の点であることを利用して、
$C$上に$x$座標と$y$座標がともに有理数であるような点が
無数に存在することを示せ。
$2025$年早稲田大学理工学部過去問題
【数学】2024年度第1回高2記述模試全問解説

単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1) $(x+2)(2x^2-4x+1)$を展開せよ。
(2) $a^2+3ab-6b-4$を因数分解せよ。
(3) $\dfrac{1}{\sqrt5+1} + \dfrac{1}{\sqrt5+3}$ を計算せよ。
(4) $90^\circ \leqq \theta \leqq 180^\circ$において、$\sin\theta=\dfrac14$のとき、$\cos\theta$の値を求めよ。
(5) 不等式 $\dfrac{x+2}{4} \geqq \dfrac{3x-5}2$を解け。
(6) 次のデータがある。 $2,3,4,4,5,6,7,9$
このデータの中央値と第3四分位数を求めよ。
(7) 円と2本の直線が図のように交わっているとき、$x$の値を求めよ。
大問2-1:図形と計量
三角形$\rm ABC$があり、$\rm AB=1, BC=\sqrt7, \cos\angle ABC=\dfrac{5}{2\sqrt7}$ である。
(1) 辺$\rm CA$の長さを求めよ。
(2) $\cos\angle \rm BAC$の値を求めよ。また、三角形$\rm ABC$の面積を求めよ。
(3) $\rm \angle BAC$を5等分する4本の直線が辺$\rm BC$と交わる4個の点のうち、頂点$\rm B$に最も近い点を$\rm D$とする。線分$\rm AD$の長さを求めよ
大問2-2:場合の数
$\rm A,A,B,C,D,E$の6個の文字を横1列に並べる。
(1) 並べ方は全部で何通りあるか。
(2) $\rm A$が左端にないような並べ方は何通りあるか。
(3) $\rm A$が左端になく、かつEが右端にないような並べ方は何通りあるか。
大問3:2次関数
$a, k$を実数とする。2つの関数
$f(x)=x^2+(2-2a)x-6a+3$
$g(x)=2x^2-2ax-\dfrac{a^2}{2}+2a+k$
に対して、$f(x)$の最小値を$M$, $g(x)$の最小値を$m$とする。
(1) $a=0$のときの$M$の値を求めよ。
(2) $m$を$a, k$を用いて表せ。
(3) $M$と$m$の小さくない方を$a$の関数とみなし、$h(a)$とする。すなわち、
$M\geqq m$のとき、$h(a)=M$
$M\leqq m$のとき、$h(a)=m$
(i) $k=-1$のとき, $h(a)=-\dfrac14$となるような$a$の値を求めよ。
(ii) $h(a)$が次の(条件)を満たすような$a$のとり得る値の範囲を求めよ。
(条件) 異なる3個以上の$a$の値に対して $h(a)$ が同じ値をとることがある。
大問4:複素数と方程式
$x$の2次方程式 $x^2-x+2=0$ がある。
(1) (*)を解け。
(2) 3次式 $x^3+2x^2+7$ を2次式 $x^2-x+2$ で割ったときの商と余りを求めよ。
(3) (*)の2つの解を$\alpha ,\beta$とする。
(i) $(\alpha+1)(\beta+1)$ の値と $\alpha^3+\beta^3$ の値を求めよ。
(ii) $a, b$を実数の定数とする、$x$の2次方程式 $x^2+ax+b=0$ の2つの解が
$(\alpha+1)^3(\beta+1)^3$ となるような$a,b$の値の組 $(a, b)$を求めよ。
(4) $p$を(*)の解とし、
$A=(p^3+2p-2+7)^6+9(p^3+2p^2+7)^3+81$ とする、$A$の値を求めよ。
大問5:確率
4個のサイコロ$A,B,C,D$がある。
(1) $A,B$の2個のサイコロを1回振り、出た目をそれぞれ$a,b$とするとき, $ab=30$となる確率を求めよ。
(2) $A,B,C$の3個のサイコロを1回振り、出た目をそれぞれ$a,b,c$とする。
(i) $abc=30$となる確率と,$abc=180$となる確率をそれぞれ求めよ。
(ii) $abc$が30の倍数となる確率を求めよ。
(3) $A,B,C,D$の4個のサイコロを1回振り、出た目をそれぞれ$a,b,c,d$とする。
(i) $a,b,c,d$の中に、5と6がともに含まれる確率を求めよ。
(ii) $abcd$が30の倍数となる確率を求めよ。
この動画を見る
大問1:小問集合
(1) $(x+2)(2x^2-4x+1)$を展開せよ。
(2) $a^2+3ab-6b-4$を因数分解せよ。
(3) $\dfrac{1}{\sqrt5+1} + \dfrac{1}{\sqrt5+3}$ を計算せよ。
(4) $90^\circ \leqq \theta \leqq 180^\circ$において、$\sin\theta=\dfrac14$のとき、$\cos\theta$の値を求めよ。
(5) 不等式 $\dfrac{x+2}{4} \geqq \dfrac{3x-5}2$を解け。
(6) 次のデータがある。 $2,3,4,4,5,6,7,9$
このデータの中央値と第3四分位数を求めよ。
(7) 円と2本の直線が図のように交わっているとき、$x$の値を求めよ。
大問2-1:図形と計量
三角形$\rm ABC$があり、$\rm AB=1, BC=\sqrt7, \cos\angle ABC=\dfrac{5}{2\sqrt7}$ である。
(1) 辺$\rm CA$の長さを求めよ。
(2) $\cos\angle \rm BAC$の値を求めよ。また、三角形$\rm ABC$の面積を求めよ。
(3) $\rm \angle BAC$を5等分する4本の直線が辺$\rm BC$と交わる4個の点のうち、頂点$\rm B$に最も近い点を$\rm D$とする。線分$\rm AD$の長さを求めよ
大問2-2:場合の数
$\rm A,A,B,C,D,E$の6個の文字を横1列に並べる。
(1) 並べ方は全部で何通りあるか。
(2) $\rm A$が左端にないような並べ方は何通りあるか。
(3) $\rm A$が左端になく、かつEが右端にないような並べ方は何通りあるか。
大問3:2次関数
$a, k$を実数とする。2つの関数
$f(x)=x^2+(2-2a)x-6a+3$
$g(x)=2x^2-2ax-\dfrac{a^2}{2}+2a+k$
に対して、$f(x)$の最小値を$M$, $g(x)$の最小値を$m$とする。
(1) $a=0$のときの$M$の値を求めよ。
(2) $m$を$a, k$を用いて表せ。
(3) $M$と$m$の小さくない方を$a$の関数とみなし、$h(a)$とする。すなわち、
$M\geqq m$のとき、$h(a)=M$
$M\leqq m$のとき、$h(a)=m$
(i) $k=-1$のとき, $h(a)=-\dfrac14$となるような$a$の値を求めよ。
(ii) $h(a)$が次の(条件)を満たすような$a$のとり得る値の範囲を求めよ。
(条件) 異なる3個以上の$a$の値に対して $h(a)$ が同じ値をとることがある。
大問4:複素数と方程式
$x$の2次方程式 $x^2-x+2=0$ がある。
(1) (*)を解け。
(2) 3次式 $x^3+2x^2+7$ を2次式 $x^2-x+2$ で割ったときの商と余りを求めよ。
(3) (*)の2つの解を$\alpha ,\beta$とする。
(i) $(\alpha+1)(\beta+1)$ の値と $\alpha^3+\beta^3$ の値を求めよ。
(ii) $a, b$を実数の定数とする、$x$の2次方程式 $x^2+ax+b=0$ の2つの解が
$(\alpha+1)^3(\beta+1)^3$ となるような$a,b$の値の組 $(a, b)$を求めよ。
(4) $p$を(*)の解とし、
$A=(p^3+2p-2+7)^6+9(p^3+2p^2+7)^3+81$ とする、$A$の値を求めよ。
大問5:確率
4個のサイコロ$A,B,C,D$がある。
(1) $A,B$の2個のサイコロを1回振り、出た目をそれぞれ$a,b$とするとき, $ab=30$となる確率を求めよ。
(2) $A,B,C$の3個のサイコロを1回振り、出た目をそれぞれ$a,b,c$とする。
(i) $abc=30$となる確率と,$abc=180$となる確率をそれぞれ求めよ。
(ii) $abc$が30の倍数となる確率を求めよ。
(3) $A,B,C,D$の4個のサイコロを1回振り、出た目をそれぞれ$a,b,c,d$とする。
(i) $a,b,c,d$の中に、5と6がともに含まれる確率を求めよ。
(ii) $abcd$が30の倍数となる確率を求めよ。
福田のおもしろ数学477〜イェンゼンの不等式の証明

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
イェンゼンの不等式
$f(x)$は凸関数、$\lambda i \geqq 0, \sum \lambda i=1$のとき、
$\lambda 1 f(x 1)+\lambda 2 f(x2) \geqq f(\lambda2x2)$
$\lambda 1 f(x 1)+\lambda 2 f(x2)+\lambda3f(x3) \geqq f(\lambda1x1+\lambda2x2+\lambda3x3)$
な成り立つ。証明して下さい。
この動画を見る
イェンゼンの不等式
$f(x)$は凸関数、$\lambda i \geqq 0, \sum \lambda i=1$のとき、
$\lambda 1 f(x 1)+\lambda 2 f(x2) \geqq f(\lambda2x2)$
$\lambda 1 f(x 1)+\lambda 2 f(x2)+\lambda3f(x3) \geqq f(\lambda1x1+\lambda2x2+\lambda3x3)$
な成り立つ。証明して下さい。
福田の数学〜早稲田大学理工学部2025第4問〜4つの互いに外接する球面の中心が作る四面体の体積

単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
空間内に原点$O$を中心とする半径$r$の球面$S$がある。
さらに、半径が$1,2,3$の球面$S_1,S_2,S_3$があり、
これら$4$つの球面のうち
どの$2$つの球面も互いに外接している。
$S_1,S_2,S_3$中心を順に$P_1,P_2,P_3$とし、
$O,P_1,P_2,P_3$は同一平面上にないとする。
さらに、球面$S$が球面$S_1,S_2,S_3$と
接する$3$つの点と、
$\overrightarrow{OQ}=\dfrac{1}{4}(\overrightarrow{OP_1}+\overrightarrow{OP_2}+\overrightarrow{OP_3})$
により定まる点$Q$は、同一平面上にあるとする。
次の問いに答えよ。
(1)$r$の値を求めよ。
(2)四面体$OP_1P_2P_3$の体積を求めよ。
$2025$年早稲田大学理工学部過去問題
この動画を見る
$\boxed{4}$
空間内に原点$O$を中心とする半径$r$の球面$S$がある。
さらに、半径が$1,2,3$の球面$S_1,S_2,S_3$があり、
これら$4$つの球面のうち
どの$2$つの球面も互いに外接している。
$S_1,S_2,S_3$中心を順に$P_1,P_2,P_3$とし、
$O,P_1,P_2,P_3$は同一平面上にないとする。
さらに、球面$S$が球面$S_1,S_2,S_3$と
接する$3$つの点と、
$\overrightarrow{OQ}=\dfrac{1}{4}(\overrightarrow{OP_1}+\overrightarrow{OP_2}+\overrightarrow{OP_3})$
により定まる点$Q$は、同一平面上にあるとする。
次の問いに答えよ。
(1)$r$の値を求めよ。
(2)四面体$OP_1P_2P_3$の体積を求めよ。
$2025$年早稲田大学理工学部過去問題
福田のおもしろ数学476〜完全順列と極限

単元:
#関数と極限#数列の極限#関数の極限#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$1,2,・・・,n$を並べるとき、$k$項目に$k$がこないような
並べ方の総数を$x_n$通りとする。
$n\geqq 3$のとき$x_n,x_{n-1},x_{n-2}$の関係式を作り、
$\displaystyle \lim_{n\to\infty} \dfrac{x_n}{n!}$を求めて下さい。
この動画を見る
$1,2,・・・,n$を並べるとき、$k$項目に$k$がこないような
並べ方の総数を$x_n$通りとする。
$n\geqq 3$のとき$x_n,x_{n-1},x_{n-2}$の関係式を作り、
$\displaystyle \lim_{n\to\infty} \dfrac{x_n}{n!}$を求めて下さい。
福田の数学〜早稲田大学理工学部2025第3問〜完全順列と漸化式

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
$1$から$n$までの異なる自然数が$1$つずつ書かれた
$n$枚のカードが一列に並んでいる。
このとき、
どのカードも現在とは異なる位置に移動するよう
並べ替えてできる順列の総数を$a_n$で表し、
並べ方の総数$n!$に閉める$a_n$の割合を$p_n$で表す。
例えば、$a_1=0,p_1=0,a_2=1,p_2=\dfrac{1}{2},$
$a_3=2,p_3=\dfrac{1}{3}$である。
(1)$a_4$の値を求めよ。
(2)$n\geqq 3$のとき、$a_n$を$a_{n-1}$と
$a_{n-2}$を用いて表せ。
(3)$n\geqq 2$のとき、$p_n-p_{n-1}$を
$n$を用いて表せ。
$2025$年早稲田大学理工学部過去問題
この動画を見る
$\boxed{3}$
$1$から$n$までの異なる自然数が$1$つずつ書かれた
$n$枚のカードが一列に並んでいる。
このとき、
どのカードも現在とは異なる位置に移動するよう
並べ替えてできる順列の総数を$a_n$で表し、
並べ方の総数$n!$に閉める$a_n$の割合を$p_n$で表す。
例えば、$a_1=0,p_1=0,a_2=1,p_2=\dfrac{1}{2},$
$a_3=2,p_3=\dfrac{1}{3}$である。
(1)$a_4$の値を求めよ。
(2)$n\geqq 3$のとき、$a_n$を$a_{n-1}$と
$a_{n-2}$を用いて表せ。
(3)$n\geqq 2$のとき、$p_n-p_{n-1}$を
$n$を用いて表せ。
$2025$年早稲田大学理工学部過去問題
福田のおもしろ数学475〜関数方程式の正しい解き方

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$0$以上の実数の集合を$R'$とする。
$R'→R'$の関数$f(x)$が任意の$x,y$に対して
$xy(y)+yf(x)=f(x)f(y)(f(x)+f(y))$
を満たしている。
$f(x)$を求めて下さい。
この動画を見る
$0$以上の実数の集合を$R'$とする。
$R'→R'$の関数$f(x)$が任意の$x,y$に対して
$xy(y)+yf(x)=f(x)f(y)(f(x)+f(y))$
を満たしている。
$f(x)$を求めて下さい。
福田の数学〜早稲田大学理工学部2025第2問〜領域に含まれる三角形の面積の最大値

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$xy$平面上で、
連立不等式
$0\lt x \leqq 1,0\leqq y \leqq \log\dfrac{1}{x}$
で定まる領域と$y$軸の
$y\geqq 0$の部分を合わせた図形を$D$とする。
$D$に含まれる三角形の最大値を求めよ。
$2025$年早稲田大学理工学部過去問題
この動画を見る
$\boxed{2}$
$xy$平面上で、
連立不等式
$0\lt x \leqq 1,0\leqq y \leqq \log\dfrac{1}{x}$
で定まる領域と$y$軸の
$y\geqq 0$の部分を合わせた図形を$D$とする。
$D$に含まれる三角形の最大値を求めよ。
$2025$年早稲田大学理工学部過去問題
福田のおもしろ数学474〜3変数の関係からa+b+cの値を求める

単元:
#連立方程式#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
実数$a,b,c$が次の条件を満たしている。
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2=1 \\
a^3+b^3+c^3=1
\end{array}
\right.
\end{eqnarray}$
$a+b+c$の値を求めよ。
この動画を見る
実数$a,b,c$が次の条件を満たしている。
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2=1 \\
a^3+b^3+c^3=1
\end{array}
\right.
\end{eqnarray}$
$a+b+c$の値を求めよ。
福田の数学〜早稲田大学理工学部2025第1問〜複素数平面上の点の軌跡と面積

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
複素数平面上で、複素数$z$が円$\vert z \vert=1$の上の点を動くとき、
$w=\left(\dfrac{1+\sqrt2}{2}\right)z+\left(\dfrac{1-\sqrt2}{2}\right)\dfrac{1}{z}$
を満たす点$w$の軌跡を$C$とする。
次の問いに答えよ。
(1)$C$はどのような図形か。複素数平面上に図示せよ。
(2)$C$と円$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert =\sqrt2$の共有点を求めよ。
(3)$C$で囲まれる領域と$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert \leqq \sqrt2$の
表す領域の共通部分の面積を求めよ。
$2025$年早稲田大学理工学部過去問題
この動画を見る
$\boxed{1}$
複素数平面上で、複素数$z$が円$\vert z \vert=1$の上の点を動くとき、
$w=\left(\dfrac{1+\sqrt2}{2}\right)z+\left(\dfrac{1-\sqrt2}{2}\right)\dfrac{1}{z}$
を満たす点$w$の軌跡を$C$とする。
次の問いに答えよ。
(1)$C$はどのような図形か。複素数平面上に図示せよ。
(2)$C$と円$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert =\sqrt2$の共有点を求めよ。
(3)$C$で囲まれる領域と$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert \leqq \sqrt2$の
表す領域の共通部分の面積を求めよ。
$2025$年早稲田大学理工学部過去問題
【数B】【数列】漸化式8 ※問題文は概要欄

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
表の出る確率が1/3である硬貨を投げて、
表が出たら点数を1点増やし、
裏が出たら点数はそのままとするゲームについて考える。
0点から始めて、硬貨を$n$回投げたときの点数が偶数である確率$P_n$を求めよ。
ただし、0は偶数と考える。
この動画を見る
表の出る確率が1/3である硬貨を投げて、
表が出たら点数を1点増やし、
裏が出たら点数はそのままとするゲームについて考える。
0点から始めて、硬貨を$n$回投げたときの点数が偶数である確率$P_n$を求めよ。
ただし、0は偶数と考える。
【数B】【数列】漸化式7 ※問題文は概要欄

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、1辺の長さ1の正方形の各辺を2:1に内分する
4点を結んでできる正方形の面積を$S_1$とする。
同様に、新しくできた正方形の各辺を2:1に内分する
4点を結んでできる正方形の面積を$S_2$とする。
以下同様に、この操作を$n$回行った後にできる
正方形の面積を$S_n$とする。
(1) $S_n$をnの式で表せ。
(2) $\displaystyle \sum_{k=1}^n S_n$を求めよ。
この動画を見る
図のように、1辺の長さ1の正方形の各辺を2:1に内分する
4点を結んでできる正方形の面積を$S_1$とする。
同様に、新しくできた正方形の各辺を2:1に内分する
4点を結んでできる正方形の面積を$S_2$とする。
以下同様に、この操作を$n$回行った後にできる
正方形の面積を$S_n$とする。
(1) $S_n$をnの式で表せ。
(2) $\displaystyle \sum_{k=1}^n S_n$を求めよ。
福田のおもしろ数学473〜難しい連立方程式を解くための飛び道具

単元:
#連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
5\left(x+\dfrac{1}{x}\right)=12\left(y+\dfrac{1}{y}\right)=13\left(z+\dfrac{1}{z}\right) \\
xy+yz+zx=1
\end{array}
\right.
\end{eqnarray}$
を満たす実数$x,y,z$をすべて求めよ。
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
5\left(x+\dfrac{1}{x}\right)=12\left(y+\dfrac{1}{y}\right)=13\left(z+\dfrac{1}{z}\right) \\
xy+yz+zx=1
\end{array}
\right.
\end{eqnarray}$
を満たす実数$x,y,z$をすべて求めよ。
福田の数学〜慶應義塾大学理工学部2025第3問〜確率漸化式

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
点$P, Q$を数直線の原点におき、
$1$個のさいころを投げて
出た目に応じて$P, Q$を動かす。
偶数の目が出たときは$P$を正の向きに$1$だけ動かし、
$5$または$6$の目が出たときは
$Q$を正の向きに$1$だけ動かす。
たとえば、$6$の目が出たときは$P, Q$をともに
正の向きに$1$だけ動かす。
$P$と$Q$の距離が初めて$2$となるまで
さいころを投げ続けることとし、
$P$と$Q$の距離が$2$となったら、
それ以降はさいころを投げない。
$n$回さいころを投げて$P$と$Q$の距離が
$2$となる確率を$p_n$とする。
(1)$P_2 = \boxed{シ}$である。
(2)$n$回さいころを投げて、
$P$が$Q$よりも正の向きに
$1$だけ進んでいる確率を$x_n$、
$P$と$Q$が同じ位置にある確率を$y_n$、
$Q$が$P$よりも正の向きに$1$だけ進んでいる確率を
$z_n$とすると、
$y_{n+1}=\boxed{ス}x_n+\boxed{セ}y_n+\boxed{ソ}z_n$
という関係式が成立する。
また、$x_n=\boxed{タ}z_n$が成り立つ。
ただし、$\boxed{ス}$~$\boxed{タ}$には数を記入すること。
(3)関係式
$z_{n+1}+\alpha y_{n+1}=\beta(z_n+\alpha y_n)$
を満たす定数の組$(\alpha,\beta)$は$\boxed{チ}$と$\boxed{ツ}$の$2$組ある。
(4)$p_n$を$n$を用いて表すと$p_n=\boxed{テ}$となる。
$2025$年慶應義塾大学理工学部過去問題
この動画を見る
$\boxed{3}$
点$P, Q$を数直線の原点におき、
$1$個のさいころを投げて
出た目に応じて$P, Q$を動かす。
偶数の目が出たときは$P$を正の向きに$1$だけ動かし、
$5$または$6$の目が出たときは
$Q$を正の向きに$1$だけ動かす。
たとえば、$6$の目が出たときは$P, Q$をともに
正の向きに$1$だけ動かす。
$P$と$Q$の距離が初めて$2$となるまで
さいころを投げ続けることとし、
$P$と$Q$の距離が$2$となったら、
それ以降はさいころを投げない。
$n$回さいころを投げて$P$と$Q$の距離が
$2$となる確率を$p_n$とする。
(1)$P_2 = \boxed{シ}$である。
(2)$n$回さいころを投げて、
$P$が$Q$よりも正の向きに
$1$だけ進んでいる確率を$x_n$、
$P$と$Q$が同じ位置にある確率を$y_n$、
$Q$が$P$よりも正の向きに$1$だけ進んでいる確率を
$z_n$とすると、
$y_{n+1}=\boxed{ス}x_n+\boxed{セ}y_n+\boxed{ソ}z_n$
という関係式が成立する。
また、$x_n=\boxed{タ}z_n$が成り立つ。
ただし、$\boxed{ス}$~$\boxed{タ}$には数を記入すること。
(3)関係式
$z_{n+1}+\alpha y_{n+1}=\beta(z_n+\alpha y_n)$
を満たす定数の組$(\alpha,\beta)$は$\boxed{チ}$と$\boxed{ツ}$の$2$組ある。
(4)$p_n$を$n$を用いて表すと$p_n=\boxed{テ}$となる。
$2025$年慶應義塾大学理工学部過去問題
福田のおもしろ数学472〜漸化式で与えられた数列の逆数の和

単元:
#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$a_1=2,a_{n+1}={a_n}^2-a_n+1$のとき
$\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+・・・+\dfrac{1}{a_{2025}}\lt 1$
を証明して下さい。
この動画を見る
$a_1=2,a_{n+1}={a_n}^2-a_n+1$のとき
$\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+・・・+\dfrac{1}{a_{2025}}\lt 1$
を証明して下さい。
福田の数学〜慶應義塾大学理工学部2025第2問〜分数関数の接線とベクトル計算

単元:
#大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
座標平面上の点$P(1,1)$と点$Q(1,-1)$および
曲線$C:y=\dfrac{1}{x-4}(x\gt 4)$を考える。
(1)曲線$C$の接線で点$Q$を通るものは存在しないことを
証明しなさい。
(2)曲線$C$の接線で点$P$を通るものを$l$とし、
$C$と$l$の接点を$A$とする。
このとき、$l$の方程式は$y=\boxed{キ}$であり、
点$A$の座標は$\boxed{ク}$である。
また、曲線$C$上の点の点$B$が
$\overrightarrow{PB}・\overrightarrow{PA}+\overrightarrow{PA}・\overrightarrow{AQ}+\overrightarrow{AB}・\overrightarrow{AQ}=-\dfrac{2}{3}$
を満たすとき、点$B$の座標は$\boxed{ケ}$である。
(3)$A,B$を(2)で定めた点とする。
正の数$t$に対し、曲線$C$上の点$R\left(t+4,\dfrac{1}{t}\right)$は
点$A$と異なるものとする。
線分$AR$を$2:1$に内分する点を$S$とし、
線分$BS$を$3:2$に内分する点を$T(u,v)$とするとき、
$u$を$t$の式で表すと$u=\boxed{コ}$である。
また、$uv$の値は$t-\boxed{サ}$のとき最小となる。
$2025$年慶應義塾大学理工学部過去問題
この動画を見る
$\boxed{2}$
座標平面上の点$P(1,1)$と点$Q(1,-1)$および
曲線$C:y=\dfrac{1}{x-4}(x\gt 4)$を考える。
(1)曲線$C$の接線で点$Q$を通るものは存在しないことを
証明しなさい。
(2)曲線$C$の接線で点$P$を通るものを$l$とし、
$C$と$l$の接点を$A$とする。
このとき、$l$の方程式は$y=\boxed{キ}$であり、
点$A$の座標は$\boxed{ク}$である。
また、曲線$C$上の点の点$B$が
$\overrightarrow{PB}・\overrightarrow{PA}+\overrightarrow{PA}・\overrightarrow{AQ}+\overrightarrow{AB}・\overrightarrow{AQ}=-\dfrac{2}{3}$
を満たすとき、点$B$の座標は$\boxed{ケ}$である。
(3)$A,B$を(2)で定めた点とする。
正の数$t$に対し、曲線$C$上の点$R\left(t+4,\dfrac{1}{t}\right)$は
点$A$と異なるものとする。
線分$AR$を$2:1$に内分する点を$S$とし、
線分$BS$を$3:2$に内分する点を$T(u,v)$とするとき、
$u$を$t$の式で表すと$u=\boxed{コ}$である。
また、$uv$の値は$t-\boxed{サ}$のとき最小となる。
$2025$年慶應義塾大学理工学部過去問題
福田のおもしろ数学471〜整数が整数で割りきれる条件

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$n$は正の整数とする。
$2025n+510$は$20n+2$で割り切れる。
このような$n$をすべて求めよ。
この動画を見る
$n$は正の整数とする。
$2025n+510$は$20n+2$で割り切れる。
このような$n$をすべて求めよ。
