数学(高校生) - 質問解決D.B.(データベース) - Page 158

数学(高校生)

福田のわかった数学〜高校2年生039〜軌跡(6)2直線の交点の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(6) 2直線の交点の軌跡\\
2直線\\
x-my+1=0, mx+y=0\\
の交点の軌跡を求めよ。
\end{eqnarray}
この動画を見る 

【理数個別の過去問解説】2016年度京都大学 数学 理系第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(理系)
2016年度(前期)第2問

p,qを素数とする。このとき$p^q+q^p$が素数となるようなp,qの値の組を全て求めよ。
この動画を見る 

奈良女子大 整数良問

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①自然数$n$が$b$と互いに素なら$n^2\equiv 1(mod 24)$
②$p^2-1=24q$を満たす素数$(p,q)$

2021奈良女子大過去問
この動画を見る 

割り算 余り

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2022^2$を$2021$で割った余りは?
この動画を見る 

【中学数学】2次方程式の解の公式の証明~中3以上はできないとヤバい~ 3-2【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#2次関数#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式の解の公式の証明
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第1問〜ソーシャルディスタンスを保つ座り方の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)ある公園に、図のように(※動画参照)10個の丸い椅子が、\\
東側に5個横一列に、西側に5個一列に、それぞれ1m間隔で置かれている。また東側の\\
椅子と西側の椅子は2つずつ背中合わせに置かれていて、その間隔は1mとなっている。\\
Aさんはいつも東側の椅子のいずれかに、Bさんは西側の椅子のいずれかに、\\
同じ確率で座る。このとき、AさんとBさんの座る日値がソーシャルディスタンスの\\
2m以上である確率は\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}である。\\
なお、AさんもBさんも椅子の中心に座り、ソーシャルディスタンスは座っている\\
椅子の中心間の距離で測るものとする。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系049〜極限(49)中間値の定理(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 中間値の定理(3)\\
Aさんは300km離れた地点まで車でちょうど5時間かけて移動した。\\
このときこの300kmの中のどこか60kmの区間を\\
ちょうど1時間で通過したことを示せ。
\end{eqnarray}
この動画を見る 

福島大 基本対称式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
{$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=-4\\ab+bc+ca=7 \\
abc=10
\end{array}
\right.
\end{eqnarray}$

①$a^2+b^2+c^2$
②$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
③$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}$

2021福島大過去問
この動画を見る 

息抜き雑問

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
①$\sqrt{3・5・17・257+1}$

どちらが大きいか?
②$9^{12}$ VS $127^{5}$
この動画を見る 

変な方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0$であり実数であるとき,これを解け.
$x^{x^4}=64$
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第4問〜数列の文章題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 座標平面上でx座標とy座標がいずれも整数である点を格子点と呼ぶ。それぞれ\\
の正の整数nについて、4つの格子点A_n(n,n),\ B_n(-n,n),\ C_n(-n,-n),\ D_n(n,-n)\\
が作る正方形をJ_nとする。また、(n-1,n)にある格子点をP_nとする。\\
\left\{a_k\right\}を初項a_1が-56で、交差が\frac{1}{4}の等差数列とし、数列\left\{a_k\right\}の各項を以下の\\
ようにして格子点上順番に割り当てていく。\\
1.初項a_1は格子点P_1に割り当てる。\\
2.a_lが正方形J_mの周上にある格子点でA_m以外の点に割り当てられているときには、\\
J_mの周上でその点から半時計回り(右図(※動画参照)での矢印が示す方向)に一つ移動\\
した格子点にa_{l+1}を割り当てる。\\
3.a_lが格子点A_mに割り当てられているときには、a_{l+1}を格子点P_{m+1}に割り当てる。\\
\\
全体としては、図に示されているようにして、格子点をたどっていくことになる。\\
(1)格子点P_nに割り当てられる数列\left\{a_k\right\}の項をp_nとし、格子点C_nに割り当て\\
られる数列\left\{a_k\right\}の項をc_nとする。このとき、p_4=-\boxed{\ \ アイ\ \ }, c_4=-\frac{\boxed{\ \ ウエオ\ \ }}{\boxed{\ \ カ\ \ }}である。\\
(2)上で定めたp_nを用いて、q_nを数列\left\{p_n\right\}の初項p_1から第n項p_nまでの和とする。\\
q_nをnを使って表すと、q_n=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}n^3-\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シ\ \ }}n である。\\
(3)上で定めたq_nが最小値を取るのは、n=\boxed{\ \ ス\ \ }またはn=\boxed{\ \ セ\ \ }のときであり、\\
その値は-\boxed{\ \ ソタチ\ \ }である。
\end{eqnarray}

2021慶應義塾大学商学部過去問
この動画を見る 

福田のわかった数学〜高校1年生039〜15°の三角比

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 15°の三角比\\
\sin15°,\cos15°,\tan15°を求めよ。
\end{eqnarray}
この動画を見る 

岩手大 フェルマーの最終定理「風」整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^4+b^4+2=c^4$を満たす整数$(a,b,c)$は存在しないことを示せ.

2021岩手大過去問
この動画を見る 

二つの円と共通接線

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$CD=?$
$\angle ACB=?$
*図は動画内参照
この動画を見る 

【数C】ベクトル:2021年高3第1回駿台全国模試 (文系)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=1、OB=2、∠AOB=θ(0<θ<π)であるとする。
∠AOBの二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは (a・p)²-2(b・p)+4=0 を満たすと する。
ただし、a=OA、b=OB、p=OPとする。次の問に答えよ。

(1)OCをa,bで表せ。
(2)pをa,b,θで表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、OH・p=b・pであることを示せ。
この動画を見る 

【高校数学】等差数列の性質~等差数列の証明と等差中項~ 3-3【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a,6,2aが等差数列のとき、aの値を求めよ
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第3問〜平面ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 点Oを原点とする座標平面上の点P,Q,Rを、ベクトル\overrightarrow{ a }=(2,1),\overrightarrow{ b }=(1,2)を用い、\\
位置ベクトル\overrightarrow{ OP }=f(t)\overrightarrow{ a }, \overrightarrow{ OQ }=f(t+2)\overrightarrow{ a }, \overrightarrow{ OR }=g(t)\overrightarrow{ b }で定める。\\
ここで、f(t),g(t)は、実数tを用いて、\\
f(t)=9t^2+1, g(t)=\frac{1}{8}(t^2-6t+9)で表される。\\
(1)\overrightarrow{ a }と\overrightarrow{ b }のなす角を\thetaとする。ただし、0 \leqq \theta \leqq \piとする。このとき、\\
\sin\theta=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} である。\\
\\
(2)t=-\boxed{\ \ ウ\ \ }のとき、点Pと点Qが一致する。それ以外のとき、点P,Q,Rは\\
異なる3点となり、t=\boxed{\ \ エ\ \ }のときその3点が一直線上に並ぶ。\\
\\
(3)-\frac{4}{3} \leqq t \leqq 4の範囲において、上記(2)以外のとき、\triangle PQRの面積は\\
t=\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}で最大値\boxed{\ \ キク\ \ }をとる。
\end{eqnarray}

2021慶應義塾大学商学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系048〜極限(48)中間値の定理(2)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 中間値の定理(2)\\
関数f(x),g(x)は区間[a,b]で連続でf(x)の最大値はg(x)の最大値よりも大きく、\\
f(x)の最小値はg(x)の最小値よりも小さい。このとき、方程式f(x)=g(x)はa \leqq x \leqq b\\
に実数解をもつことを示せ。
\end{eqnarray}
この動画を見る 

【数B】確率分布:<分散の計算に注意!>2つの確率変数の和の期待値・分散

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(2つの確率の和の期待値・分散の求め方と例)
赤のコイン2枚投げて表の出た枚数をX,青のコイン1枚投げて表の出た枚数をYとするとき、X+Yの期待値・分散を求めよう
この動画を見る 

総復習

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[(\sqrt[3]{9+4\sqrt5})^{100}]$の1の位を求めよ.
この動画を見る 

【数B】ベクトル:2021年高3第1回数台全国模試 (文系)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、$OA=1、OB=2、\angle AOB=\theta(0\lt\theta\lt\pi)$であるとする。
$\angle AOB$の二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは$ (a・p)^2-2(b・p)+4=0$ を満たすと する。
ただし、$a=OA、b=OB、p=OP$とする。次の問に答えよ。

(1)OCをa,bで表せ。
(2)pをa,b,$\theta$で表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、$OH・p=b・p$であることを示せ。
この動画を見る 

36度

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第2問〜確率の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} a,k,nは正の整数で、a \lt kとする。袋の中にk個の玉が入っている。そのうち\\
a個は赤玉で、残りのk-a個は青玉である。\\
「袋から1個の玉を取り出し、色を調べてから袋に戻すとともに、その玉と同色\\
の玉をn個袋に追加する」という操作を繰り返す。\\
(\textrm{i})1回目に赤玉が出たとき、2回目に赤玉が出る確率は\boxed{\ \ ア\ \ }である。\\
(\textrm{ii})2回目に赤玉が出る確率は\boxed{\ \ イ\ \ }である。\\
(\textrm{iii})2回目に青玉が出たとき、1回目に赤玉が出ていた確率は\boxed{\ \ ウ\ \ }である。\\
(\textrm{iv})この操作を3回繰り返す。1回ごとに赤玉が出たら1点、青玉が出たら2点\\
を得るとき、得点の合計が4点となる確率は\boxed{\ \ エ\ \ }である。\\
\end{eqnarray}

2021慶應義塾大学総合政策学部過去問
この動画を見る 

福田のわかった数学〜高校1年生037〜部屋割り論法(2)の訂正版

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 部屋割り論法(2)\\
座標平面上に異なる5個の格子点がある。これら5個の格子点の中に、\\
結んだ線分の中点がまた格子点となるような2点が存在することを示せ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生038〜軌跡(5)反転の話その3

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(5) 反転の話(3)まとめ\\
動点Pが原点Oを通る原点以外の円上を動く。半直線OP上でOP・OQ=a^2\\
(a \gt 0)を満たす点Qの軌跡は原点を通らない直線となることを示せ。
\end{eqnarray}
この動画を見る 

【数Ⅱ】微分法と積分法:2021年高3第1回数台全国模試 (文理共通)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とし、xの4次関数f(x)を$f(x)=3x^4-4(a+2)x^3+12ax^2+1$とする。次の問に答 えよ。
(1)f(x)が極大値をもつようなaの値の範囲を求めよ。
(2)(1)で求めた範囲 をaが動くとき、曲線y=f(x)において、f(x)が極大となる点の軌跡を求めよ。
この動画を見る 

3乗根の方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\sqrt[3]{(x+1)^2}+2\sqrt[3]{(x-1)^2}=3\sqrt[3]{x^2-1}$
この動画を見る 

【数Ⅲ】積分法の応用:体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C:y=ax^2$ と直線 $\ell:y=bx$とで囲まれた図形をDとする。(a,bを正の定数とする)
Dを $\ell$のまわりに1回転してできる立体の体積Vを求めよ。
この動画を見る 

【中学数学】平方根・ルートの計算演習~乗法公式3~ 2-9.5【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})$

2⃣
$(5\sqrt{5}-2\sqrt{7})(5\sqrt{5}+2\sqrt{7})$

3⃣
$(\sqrt{3}+4)(\sqrt{3}-4)$
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第1問(2)〜共通接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)点Aを、放物線C_1:y=x^2上にある点で、第1象限(x \gt 0かつy \gt 0の範囲)\\
に属するものとする。そのうえで、次の条件を満たす放物線\\
C_2:y=-3(x-p)^2+q を考える。\\
1.点Aは、放物線C_2上の点である。\\
2.放物線C_2の点Aにおける接線をlとするとき、lは放物線C_1の点Aにおける\\
接線と同一である。\\
点Aの座標をA(a,a^2)とするとき、\\
p=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}a, q=\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}a^2\\
と表せる。また、直線l、放物線C_2、および直線x=pで囲まれた部分の\\
面積は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}a^3 である。
\end{eqnarray}

2021慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP