数学(高校生)
三重大 対数と二次関数
単元:
#数Ⅰ#数Ⅱ#2次関数#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha \gt 0$とする.
$f(x)=\log_3 \left(-\dfrac{1}{2}x^2+\dfrac{1}{2}\alpha x+9 \right)$
$f(x)$が整数となる$x$が$0\leqq x\leqq \alpha$の範囲でちょうど$6$個あるような$\alpha$の範囲を求めよ.
三重大過去問
この動画を見る
$\alpha \gt 0$とする.
$f(x)=\log_3 \left(-\dfrac{1}{2}x^2+\dfrac{1}{2}\alpha x+9 \right)$
$f(x)$が整数となる$x$が$0\leqq x\leqq \alpha$の範囲でちょうど$6$個あるような$\alpha$の範囲を求めよ.
三重大過去問
東大 不定方程式
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数とする.
①$x+y+z=xyz$を満たす$(x,y,z)$をすべて求めよ.$(x\leqq y\leqq z)$
②$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ.
2006東大過去問
この動画を見る
$x,y,z$は自然数とする.
①$x+y+z=xyz$を満たす$(x,y,z)$をすべて求めよ.$(x\leqq y\leqq z)$
②$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ.
2006東大過去問
「二次関数の最大最小 場合分け①】【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(2)$f(x)$の最大値$M(a)$を求めよ。
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(3)$y=m(a)$のグラフをかけ。
この動画を見る
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(2)$f(x)$の最大値$M(a)$を求めよ。
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(3)$y=m(a)$のグラフをかけ。
【高校数学】2次関数の最大最小例題~定義域の両方に文字~ 2-4.5【数学Ⅰ】
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
関数$y=-x^2+4x+5(a \leqq x \leqq a+2)$について、
(1) 最大値を求めよ
(2) 最小値を求めよ
この動画を見る
関数$y=-x^2+4x+5(a \leqq x \leqq a+2)$について、
(1) 最大値を求めよ
(2) 最小値を求めよ
東邦大(医)三次方程式が自然数解を持つ条件
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a$は正の整数である.
$x^3-20x^2+(100-a)x+8a-23=0$が正の整数解をただ一つもつとする.
$a$の値を求めよ.
2016東邦大(医)過去問
この動画を見る
$a$は正の整数である.
$x^3-20x^2+(100-a)x+8a-23=0$が正の整数解をただ一つもつとする.
$a$の値を求めよ.
2016東邦大(医)過去問
【空間ベクトル】直線の方程式 発展分野
単元:
#空間ベクトル#空間ベクトル#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【空間ベクトル】直線の方程式 発展分野解説動画です
-----------------
点$A(3,2,1)$を通り、$\vec{ d }=(1,2,4)$に平行な直線の方程式は?
この動画を見る
【空間ベクトル】直線の方程式 発展分野解説動画です
-----------------
点$A(3,2,1)$を通り、$\vec{ d }=(1,2,4)$に平行な直線の方程式は?
北海道大 整数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$を自然数とする.
(1)$\dfrac{3x}{x^2+2}$が自然数となる$x$を求めよ.
(2)$\dfrac{3x}{x^2+2}+\dfrac{1}{y}$が自然数となる$(x,y)$を求めよ.
2016北海道大過去問
この動画を見る
$x,y$を自然数とする.
(1)$\dfrac{3x}{x^2+2}$が自然数となる$x$を求めよ.
(2)$\dfrac{3x}{x^2+2}+\dfrac{1}{y}$が自然数となる$(x,y)$を求めよ.
2016北海道大過去問
「二次関数の最大最小②」【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)$y=(x^2-6x)^2+2(x^2-6x)-1$の最小値を求めよ。
(2)$y=(x^2-6x)^2+2(x^2-6x)-1(1 \leqq x \leqq 4)$の最大値と最小値を求めよ。
(3)$x \geqq 0,y \geqq 0x+y=1$のとき、$3x^2+y^2$の最大値と最小値を求めよ。
(4)実数$x,y$について$P=x^2+3y^2-2x+10y+4$の最小値を求めよ。
(5)実数$x,y$について$P=x^2-2xy+3y^2-2x+10y+4$の最小値を求めよ。
この動画を見る
(1)$y=(x^2-6x)^2+2(x^2-6x)-1$の最小値を求めよ。
(2)$y=(x^2-6x)^2+2(x^2-6x)-1(1 \leqq x \leqq 4)$の最大値と最小値を求めよ。
(3)$x \geqq 0,y \geqq 0x+y=1$のとき、$3x^2+y^2$の最大値と最小値を求めよ。
(4)実数$x,y$について$P=x^2+3y^2-2x+10y+4$の最小値を求めよ。
(5)実数$x,y$について$P=x^2-2xy+3y^2-2x+10y+4$の最小値を求めよ。
素因数分解せよ
津田塾大 基本対称式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数である.
$abc,ab+bc+ca$,$a+b+c$がすべて3の倍数なら,$a,b,c$はすべて3の倍数であることを示せ.
2016津田塾大過去問
この動画を見る
$a,b,c$は自然数である.
$abc,ab+bc+ca$,$a+b+c$がすべて3の倍数なら,$a,b,c$はすべて3の倍数であることを示せ.
2016津田塾大過去問
【意外と解けない?!?!】$y=3^{2x}$を微分せよ。
名古屋市立(医)不等式の証明
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数である.
(1)$\sqrt2$は$\dfrac{b}{a}$と$\dfrac{2a+b}{a+b}$の間にある.
(2)$\sqrt2$は$\dfrac{b}{a}$と$\dfrac{2a+b}{a+b}$どちらに近いか.
1966名古屋市立(医)
この動画を見る
$a,b$は自然数である.
(1)$\sqrt2$は$\dfrac{b}{a}$と$\dfrac{2a+b}{a+b}$の間にある.
(2)$\sqrt2$は$\dfrac{b}{a}$と$\dfrac{2a+b}{a+b}$どちらに近いか.
1966名古屋市立(医)
「二次関数の最大最小①」全パターン【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=2x^2-4x+c(-1 \leqq x \leqq 4)$の最大値が$7$となるような$c$の値を求めよ。
(2)関数$f(x)=ax^2-2ax+b(-1 \leqq x \leqq 2)$の最大値が$5$、最小値が$1$となるような$a,b$の値を求めよ。
2次関数$f(x)=x^2+2ax+2a-1(-2 \leqq x \leqq 3)$について、$a$の値が変化するときの最小値を$m(a)$とするとき、$m(a)$の最大値を求めよ。
この動画を見る
次の問いに答えよ。
(1)関数$f(x)=2x^2-4x+c(-1 \leqq x \leqq 4)$の最大値が$7$となるような$c$の値を求めよ。
(2)関数$f(x)=ax^2-2ax+b(-1 \leqq x \leqq 2)$の最大値が$5$、最小値が$1$となるような$a,b$の値を求めよ。
2次関数$f(x)=x^2+2ax+2a-1(-2 \leqq x \leqq 3)$について、$a$の値が変化するときの最小値を$m(a)$とするとき、$m(a)$の最大値を求めよ。
【数Ⅱ】微分法と積分法:定積分について基礎からめちゃめちゃ分かりやすく解説!用語や記号の解説からしますので初学者必見!
富山大(医) 無理数の証明
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$は異なる素数であり,$k,m,n$は整数である.
$k+m\sqrt p+n\sqrt q=0$なら,$k=m=n=0$を示せ.
(1)$\sqrt p$が無理数であることを示せ.
2016富山大(医)
この動画を見る
$p,q$は異なる素数であり,$k,m,n$は整数である.
$k+m\sqrt p+n\sqrt q=0$なら,$k=m=n=0$を示せ.
(1)$\sqrt p$が無理数であることを示せ.
2016富山大(医)
「二次関数の決定」全パターン【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件を満たす2次関数を求めよ。
(1)頂点が$(1,3)$で、点$(2,5)$を通る。
(2)軸が直線$x=2$で、2点$(0,-1),(-1,-6)$を通る。
(3)3点$(1,6),(-2,-9),(4,3)$を通る。
(4)3点$(-2,0),(3,0),(1,-12)$を通る。
(5)$y=2x^2$を平行移動したグラフで、点$(2,3)$を通り、頂点が直線$y=2x-1$上にある。
この動画を見る
次の条件を満たす2次関数を求めよ。
(1)頂点が$(1,3)$で、点$(2,5)$を通る。
(2)軸が直線$x=2$で、2点$(0,-1),(-1,-6)$を通る。
(3)3点$(1,6),(-2,-9),(4,3)$を通る。
(4)3点$(-2,0),(3,0),(1,-12)$を通る。
(5)$y=2x^2$を平行移動したグラフで、点$(2,3)$を通り、頂点が直線$y=2x-1$上にある。
聖マリアンナ医大 整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p$は素数であり,$x,y,z$は整数である.
$x^3+py^3+p^2z^3-p^3xyz=0$ならば,$x=y=z=0$であることを示せ.
2016聖マリアンナ医大過去問
この動画を見る
$p$は素数であり,$x,y,z$は整数である.
$x^3+py^3+p^2z^3-p^3xyz=0$ならば,$x=y=z=0$であることを示せ.
2016聖マリアンナ医大過去問
【空間ベクトル】平面の方程式 3点を通る
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【空間ベクトル】平面の方程式解説動画です
-----------------
3点$A(0,1,1),B(1,0,2),C(-3,2,3)$を通る平面の方程式は?
この動画を見る
【空間ベクトル】平面の方程式解説動画です
-----------------
3点$A(0,1,1),B(1,0,2),C(-3,2,3)$を通る平面の方程式は?
「二次関数の平行移動・対称移動」全パターン【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$y=2x^2-4x+5$ ・・・①について
$y=2x^2-4x+5$
$\ =2(x^2-2x)+5$
$\ 2\{(x-1)^2-1\}+5$
$\ 2(x-1)^2+3$
であるから、頂点$(1,3)$となる。 ・・・②
(1)
①を$x$軸方向に$3,y$軸方向に$-4$平行移動して得られるグラフの方程式を求めよ。
(2)
①のグラフを$x$軸に関して対称移動させた関数の方程式を求めよ。
(3)
①のグラフを$y$軸に関して対称移動させた関数の方程式を求めよ。
(4)
①のグラフを原点に関して対称移動させた関数の方程式を求めよ。
(5)
$x$軸方向に$1,y$軸方向に$-2$平行移動して、$x$軸に関して対称移動させたグラフの方程式が①になるようなグラフの方程式を求めよ。
(6)
任意の実数$k$について2次関数$y=3x^2+kx-2k+1$のグラフは、ある定点を通る。
その定点の座標を求めよ。
この動画を見る
2次関数$y=2x^2-4x+5$ ・・・①について
$y=2x^2-4x+5$
$\ =2(x^2-2x)+5$
$\ 2\{(x-1)^2-1\}+5$
$\ 2(x-1)^2+3$
であるから、頂点$(1,3)$となる。 ・・・②
(1)
①を$x$軸方向に$3,y$軸方向に$-4$平行移動して得られるグラフの方程式を求めよ。
(2)
①のグラフを$x$軸に関して対称移動させた関数の方程式を求めよ。
(3)
①のグラフを$y$軸に関して対称移動させた関数の方程式を求めよ。
(4)
①のグラフを原点に関して対称移動させた関数の方程式を求めよ。
(5)
$x$軸方向に$1,y$軸方向に$-2$平行移動して、$x$軸に関して対称移動させたグラフの方程式が①になるようなグラフの方程式を求めよ。
(6)
任意の実数$k$について2次関数$y=3x^2+kx-2k+1$のグラフは、ある定点を通る。
その定点の座標を求めよ。
整数問題2021
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2021^{2021^{2021}}$の下3桁を求めよ.
この動画を見る
$2021^{2021^{2021}}$の下3桁を求めよ.
2021!を5の504乗で割ったあまり
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2021!$を$5^{504}$で割った余りを求めよ.
この動画を見る
$2021!$を$5^{504}$で割った余りを求めよ.
【二次関数の平行移動・対称移動】を宇宙一わかりやすく【高校数学ⅠA】
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
【高校数学ⅠA】二次関数の平行移動・対称移動についての解説動画です
この動画を見る
【高校数学ⅠA】二次関数の平行移動・対称移動についての解説動画です
【高校数学】2次関数の最大最小例題~放物線の軸に文字~ 2-4.5【数学Ⅰ】
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
関数$y=x^2-2ax+4(0 \leqq x \leqq 3)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る
関数$y=x^2-2ax+4(0 \leqq x \leqq 3)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
京都大 整式の剰余
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x$は自然数とする.
整式$x^n$を整式$x^2-2x-1$sw割った余りを$ax+b$とする.
$a,b$は整数であり,$a,b$をともに割り切る素数は無いことを示せ.
2013京都大過去問
この動画を見る
$x$は自然数とする.
整式$x^n$を整式$x^2-2x-1$sw割った余りを$ax+b$とする.
$a,b$は整数であり,$a,b$をともに割り切る素数は無いことを示せ.
2013京都大過去問
【数Ⅲ-175】曲線の長さ②(媒介変数表示編)
単元:
#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(曲線の長さ②・媒介変数表示編)
ポイント
曲線$x=f(t)$、$y=g(t) (a \leqq t \leqq b)$ の長さ$L$は $L=$①
②曲線$x=a\cos^3θ、y=a \sin^3θ (0 \leqq θ \leqq \frac{\pi}{2})$の長さを求めよ。
ただし$a \gt 0$とする。
この動画を見る
数Ⅲ(曲線の長さ②・媒介変数表示編)
ポイント
曲線$x=f(t)$、$y=g(t) (a \leqq t \leqq b)$ の長さ$L$は $L=$①
②曲線$x=a\cos^3θ、y=a \sin^3θ (0 \leqq θ \leqq \frac{\pi}{2})$の長さを求めよ。
ただし$a \gt 0$とする。
【数学B】平面の方程式(発展)【空間ベクトル】
単元:
#空間ベクトル#空間ベクトル#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学B】平面の方程式(発展)の解説動画です
-----------------
$A(1,2,2)$を通り、$\vec { n }(3,-2,4)$に垂直な平面の方程式は?
この動画を見る
【数学B】平面の方程式(発展)の解説動画です
-----------------
$A(1,2,2)$を通り、$\vec { n }(3,-2,4)$に垂直な平面の方程式は?
整式の剰余
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^{ab}+x^{a+b}+1$,$g(x)=x^2+x+1$
$a,b$は自然数とする.
$f(x)$が$g(x)$で割り切れるための$a,b$の条件を求めよ.
この動画を見る
$f(x)=x^{ab}+x^{a+b}+1$,$g(x)=x^2+x+1$
$a,b$は自然数とする.
$f(x)$が$g(x)$で割り切れるための$a,b$の条件を求めよ.
11神奈川県教員採用試験(数学:6番 指数)
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
6⃣$4^x+9^y=a^2$
$2^{x+1}+3^{2y}$の最大値を求めよ。(a>1)
この動画を見る
6⃣$4^x+9^y=a^2$
$2^{x+1}+3^{2y}$の最大値を求めよ。(a>1)
東大 三角比と漸化式
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.
(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)
1994東大過去問
この動画を見る
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.
(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)
1994東大過去問
「対偶法と背理法の証明②」の全パターン【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(3)
$\sqrt{ 2 }$が無理数であることを用いて$3-\sqrt{ 2 }$が無理数であることを示せ。
(4)
$\sqrt{ 6 }$が無理数であることを用いて$\sqrt{ 3 }-\sqrt{ 2 }$が無理数であることを示せ。
(5)
(ⅰ)$n^2$が$3$の倍数ならば、$n$が$3$の倍数であることを示せ。
(ⅱ)$\sqrt{ 3 }$が無理数であることを示せ。
この動画を見る
(3)
$\sqrt{ 2 }$が無理数であることを用いて$3-\sqrt{ 2 }$が無理数であることを示せ。
(4)
$\sqrt{ 6 }$が無理数であることを用いて$\sqrt{ 3 }-\sqrt{ 2 }$が無理数であることを示せ。
(5)
(ⅰ)$n^2$が$3$の倍数ならば、$n$が$3$の倍数であることを示せ。
(ⅱ)$\sqrt{ 3 }$が無理数であることを示せ。