数学(高校生)

【高校数学】「論理と集合」と「ベン図」をたぶん日本一わかりやすく解説した動画【篠原好】

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「論理と集合」について、わかりやすく解説しています。
この動画を見る
「論理と集合」について、わかりやすく解説しています。
【京大式】数学がニガテなら絶対に読んで欲しいこの本!和田秀樹さんの『数学は暗記だ!』【篠原好】

【高校数学】 数Ⅰ-100 立体に内接する球

単元:
#数Ⅰ#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎右図のように、高さ4、底面の半径$\sqrt{ 2 }$の円錐球Oと側面で接し、底面の中心Mでも接している。
①球Oの体積は?
②球Oの表面積は?
※図は動画内参照
この動画を見る
◎右図のように、高さ4、底面の半径$\sqrt{ 2 }$の円錐球Oと側面で接し、底面の中心Mでも接している。
①球Oの体積は?
②球Oの表面積は?
※図は動画内参照
【高校数学】 数Ⅰ-99 正四面体の切り口

単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎1辺の長さが6の正四面体OABCがある。
OAの中点をL、辺OBを2:1に分ける点をM、辺OC上で2ON=NCを満たす点をNとする。
①$LM$の長さは?
②$\cos \angle MLN$の値は?
③$△LMN$の面積は?
この動画を見る
◎1辺の長さが6の正四面体OABCがある。
OAの中点をL、辺OBを2:1に分ける点をM、辺OC上で2ON=NCを満たす点をNとする。
①$LM$の長さは?
②$\cos \angle MLN$の値は?
③$△LMN$の面積は?
【高校数学】 数Ⅰ-98 三角形の内角の二等分線

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\angle A=60°, AB=4.AC=3$である△ABCの$\angle A$の二等分線が辺BCと交わる点をDとするとき、線分ADの長さを求めよう。
この動画を見る
◎$\angle A=60°, AB=4.AC=3$である△ABCの$\angle A$の二等分線が辺BCと交わる点をDとするとき、線分ADの長さを求めよう。
【高校数学】 数Ⅰ-97 内接円と外接円の半径

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎AB=7,BC=8,CA=5の△ABCについて。
①外接円の半径Rは?
②内接円の半径rは?
この動画を見る
◎AB=7,BC=8,CA=5の△ABCについて。
①外接円の半径Rは?
②内接円の半径rは?
【高校数学】 数Ⅰ-96 円に内接する四角形

単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎円に内接する四角形ABCDがあり、AB=3,BC=1,DA=4である。
①線分BDの長さは?
②四角形ABCDの面積は?
この動画を見る
◎円に内接する四角形ABCDがあり、AB=3,BC=1,DA=4である。
①線分BDの長さは?
②四角形ABCDの面積は?
【高校数学】 数Ⅰ-95 多角形の面積

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次のような図形の面積Sを求めよう。
①$AB=5,BC=8,CD=4,\angle B=\angle C=60°$の四角形ABCD
②1辺の長さが2の正十二角形
この動画を見る
◎次のような図形の面積Sを求めよう。
①$AB=5,BC=8,CD=4,\angle B=\angle C=60°$の四角形ABCD
②1辺の長さが2の正十二角形
【高校数学】 数Ⅰ-94 三角形の面積② ・ ヘロンの公式編

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
3辺の長さがa,b,cである△ABCの面積Sは、
S=①____________(t=②____________)
◎次のような△ABCの面積を求めよう。
③a=8,b=6,C=4
④a=7,b=5,C=9
この動画を見る
3辺の長さがa,b,cである△ABCの面積Sは、
S=①____________(t=②____________)
◎次のような△ABCの面積を求めよう。
③a=8,b=6,C=4
④a=7,b=5,C=9
【高校数学】 数Ⅰ-93 三角形の面積① ・ 基本編

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
三角形の面積S=①__________________
△ABCの内接円の半径rとするとS=②____________
※図は動画内参照
◎次の△ABCの面積Sを求めよう。
③$b=3,C=2,A=120°$
④$a=2\sqrt{ 2 },b=3,A110°,B=25°$
⑤$a=6,b=3,c=7$
この動画を見る
三角形の面積S=①__________________
△ABCの内接円の半径rとするとS=②____________
※図は動画内参照
◎次の△ABCの面積Sを求めよう。
③$b=3,C=2,A=120°$
④$a=2\sqrt{ 2 },b=3,A110°,B=25°$
⑤$a=6,b=3,c=7$
【高校数学】 数Ⅰ-92 三角形となる条件

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎3辺の長さが、5,3,xである三角形が鈍角三角形となるように、xの範囲を定めよう。
この動画を見る
◎3辺の長さが、5,3,xである三角形が鈍角三角形となるように、xの範囲を定めよう。
【高校数学】 数Ⅰ-91 正弦定理と余弦定理④

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎△ABCの辺BCの中点をM、線分BMの中点をDとする。
a=8,b=4,C=6のとき、次のものを求めよう。
①$\cos B$の値
②$AM$の長さ
③$AD$の長さ
※図は動画内参照
この動画を見る
◎△ABCの辺BCの中点をM、線分BMの中点をDとする。
a=8,b=4,C=6のとき、次のものを求めよう。
①$\cos B$の値
②$AM$の長さ
③$AD$の長さ
※図は動画内参照
【高校数学】 数Ⅰ-90 正弦定理と余弦定理③

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、次が成り立つとき、この三角形の最も大きい角の余弦の値を求めよう。
①$\displaystyle \frac{a}{13}=\displaystyle \frac{b}{8}=\displaystyle \frac{c}{7}$
②$\sin A:\sin B:\sin C=5:4:6$
この動画を見る
◎△ABCにおいて、次が成り立つとき、この三角形の最も大きい角の余弦の値を求めよう。
①$\displaystyle \frac{a}{13}=\displaystyle \frac{b}{8}=\displaystyle \frac{c}{7}$
②$\sin A:\sin B:\sin C=5:4:6$
【高校数学】 数Ⅰ-89 正弦定理と余弦定理②

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、$a=2,b=\sqrt{ 6 },A=45°$のとき、
残りの底辺の長さと角の大きさを求めよう。
この動画を見る
◎△ABCにおいて、$a=2,b=\sqrt{ 6 },A=45°$のとき、
残りの底辺の長さと角の大きさを求めよう。
【高校数学】 数Ⅰ-88 正弦定理と余弦定理①

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、次のものを求めよ。
①$B=60°,C=75°,b=2\sqrt{ 6 }$のとき$a$
②$a=4,b=\sqrt{ 21 },C=5$のとき$B$
③$b=60°,a:b=1:3$のとき$\sin A$
この動画を見る
◎△ABCにおいて、次のものを求めよ。
①$B=60°,C=75°,b=2\sqrt{ 6 }$のとき$a$
②$a=4,b=\sqrt{ 21 },C=5$のとき$B$
③$b=60°,a:b=1:3$のとき$\sin A$
【高校数学】 数Ⅰ-87 余弦定理

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
△ABCについて
①$a^2=$____
②$b^2=$____
③$c^2=$____
④$\cos A=$____
⑤$\cos B=$____
⑥$\cos C=$____
※図は動画内参照
◎△ABCにおいて、次のものを求めよう。
⑦$a=3,b=\sqrt{ 2 },C=45°$のとき $c$
⑧$b=7,c=5,B=60°$のとき$a$
この動画を見る
△ABCについて
①$a^2=$____
②$b^2=$____
③$c^2=$____
④$\cos A=$____
⑤$\cos B=$____
⑥$\cos C=$____
※図は動画内参照
◎△ABCにおいて、次のものを求めよう。
⑦$a=3,b=\sqrt{ 2 },C=45°$のとき $c$
⑧$b=7,c=5,B=60°$のとき$a$
【高校数学】 数Ⅰ-86 正弦定理

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
△ABCの外接円の半径をRとすると
①____=②____=③____=2R
◎△ABCにおいて、外接円の半径をRとするとき、次のものを求めよう。
④B=120°,R=4のとき b
⑤a=5$\sqrt{ 3 }$,R=5のとき A
⑥A=60°,C=75°,a=$2\sqrt{ 6 }$のとき Rとb
※図は動画内参照
この動画を見る
△ABCの外接円の半径をRとすると
①____=②____=③____=2R
◎△ABCにおいて、外接円の半径をRとするとき、次のものを求めよう。
④B=120°,R=4のとき b
⑤a=5$\sqrt{ 3 }$,R=5のとき A
⑥A=60°,C=75°,a=$2\sqrt{ 6 }$のとき Rとb
※図は動画内参照
【高校数学】 数Ⅰ-85 三角比⑩

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 180°$であるとき、$y=\cos^2\theta-2\sin\theta-1$の最大値と最小値を求め、そのときの$\theta$も求めよう。
この動画を見る
$0° \leqq \theta \leqq 180°$であるとき、$y=\cos^2\theta-2\sin\theta-1$の最大値と最小値を求め、そのときの$\theta$も求めよう。
【高校数学】 数Ⅰ-84 三角比⑨

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 180°$とする。次の不等式を満たす
$\theta $の範囲を求めよう。
①$\sin \theta \gt \displaystyle \frac{\sqrt{ 3 }}{2}$
②$\cos \theta \lt \displaystyle \frac{1}{2}$
③$\tan \theta \geqq \sqrt{ 3 }$
④$2\sin \theta-1\leqq0$
⑤$2\cos \theta+ \sqrt{ 3 } \gt 0$
⑥$\tan \theta +1 \geqq 0$
この動画を見る
$0° \leqq \theta \leqq 180°$とする。次の不等式を満たす
$\theta $の範囲を求めよう。
①$\sin \theta \gt \displaystyle \frac{\sqrt{ 3 }}{2}$
②$\cos \theta \lt \displaystyle \frac{1}{2}$
③$\tan \theta \geqq \sqrt{ 3 }$
④$2\sin \theta-1\leqq0$
⑤$2\cos \theta+ \sqrt{ 3 } \gt 0$
⑥$\tan \theta +1 \geqq 0$
【高校数学】 数Ⅰ-83 三角比⑧

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$0° \leqq \theta \leqq 180°,\sin \theta+\cos \theta=\displaystyle \frac{1}{2}$のとき、次の式の値を求めよう。
①$\sin \theta\cos \theta$
②$\sin^3 \theta+\cos^3 \theta$
③$\sin \theta-\cos \theta$
この動画を見る
◎$0° \leqq \theta \leqq 180°,\sin \theta+\cos \theta=\displaystyle \frac{1}{2}$のとき、次の式の値を求めよう。
①$\sin \theta\cos \theta$
②$\sin^3 \theta+\cos^3 \theta$
③$\sin \theta-\cos \theta$
【高校数学】 数Ⅰ-82 三角比⑦

単元:
#数Ⅰ#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の式のとりうる値の範囲を求めよう。
①$\cos \theta+2(0° \leqq \theta \leqq 180°)$
②$3\sin \theta-1(0° \leqq \theta \leqq 180°)$
③$\sqrt{ 2 }\sin \theta+3(45° \leqq \theta \leqq 120°)$
④$\sqrt{ 3 }\tan \theta-3(30° \leqq \theta \lt 60°)$
この動画を見る
◎次の式のとりうる値の範囲を求めよう。
①$\cos \theta+2(0° \leqq \theta \leqq 180°)$
②$3\sin \theta-1(0° \leqq \theta \leqq 180°)$
③$\sqrt{ 2 }\sin \theta+3(45° \leqq \theta \leqq 120°)$
④$\sqrt{ 3 }\tan \theta-3(30° \leqq \theta \lt 60°)$
【高校数学】 数Ⅰ-81 三角比⑥

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$0° \leqq \theta \leqq 180°$のとき、次の等式を満たす$\theta$を求めよう。
①$\cos \theta=\displaystyle \frac{1}{\sqrt{ 2 }}$
②$\sin \theta=\sqrt{ 3 }$
③$\sqrt{ 3 } \tan \theta+1=0$
④$0° \leqq \theta \leqq 180°$とする。
$\sin \theta=\displaystyle \frac{4}{5}$のとき、$\cos \theta,\tan \theta$の値を求めよう。
この動画を見る
◎$0° \leqq \theta \leqq 180°$のとき、次の等式を満たす$\theta$を求めよう。
①$\cos \theta=\displaystyle \frac{1}{\sqrt{ 2 }}$
②$\sin \theta=\sqrt{ 3 }$
③$\sqrt{ 3 } \tan \theta+1=0$
④$0° \leqq \theta \leqq 180°$とする。
$\sin \theta=\displaystyle \frac{4}{5}$のとき、$\cos \theta,\tan \theta$の値を求めよう。
【高校数学】 数Ⅰ-80 三角比⑤

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 90°$のとき
$\sin (90°+\theta)=$①____
$\cos(90°+\theta)=$②____
$\tan(90°+\theta)=$③____
$0° \leqq \theta \leqq 180°$とき
$\sin (180°-\theta)=$④____
$\cos(180°-\theta)=$⑤____
$\tan(180°-\theta)=$⑥____
⑦$\sin105°-\cos150°+\sin120°+\cos165°$の値は?
この動画を見る
$0° \leqq \theta \leqq 90°$のとき
$\sin (90°+\theta)=$①____
$\cos(90°+\theta)=$②____
$\tan(90°+\theta)=$③____
$0° \leqq \theta \leqq 180°$とき
$\sin (180°-\theta)=$④____
$\cos(180°-\theta)=$⑤____
$\tan(180°-\theta)=$⑥____
⑦$\sin105°-\cos150°+\sin120°+\cos165°$の値は?
【高校数学】 数Ⅰ-79 三角比④ ・ 暗記編

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
空欄を埋めよ。
$\begin{array}{|c|c|c|}
\hline
\theta & 0° & 30° & 45° & 60° & 90° & 120° & 135° & 150° & 180° \\
\hline
\sin\theta & & \\
\hline
\cos\theta & & \\
\hline
\tan\theta & & \\
\hline
\end{array}$
この動画を見る
空欄を埋めよ。
$\begin{array}{|c|c|c|}
\hline
\theta & 0° & 30° & 45° & 60° & 90° & 120° & 135° & 150° & 180° \\
\hline
\sin\theta & & \\
\hline
\cos\theta & & \\
\hline
\tan\theta & & \\
\hline
\end{array}$
【高校数学】 数Ⅰ-78 三角比③

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算してみよう。
①$(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^2$
②$\displaystyle \frac{1}{1+\tan^2 \theta}-(1-\sin \theta)(1+\sin \theta)$
この動画を見る
計算してみよう。
①$(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^2$
②$\displaystyle \frac{1}{1+\tan^2 \theta}-(1-\sin \theta)(1+\sin \theta)$
【高校数学】 数Ⅰ-77 三角比② ・ 公式編

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0° \lt \theta \lt 90°$のとき
$\sin (90°-\theta)=$①____
$\cos(90°-\theta)=$②____
$\tan(90°-\theta)=$③____
$\tan \theta=$④____
$\sin^2 \theta+\cos^2 \theta=$⑤____
$1+\tan^2 \theta=$⑥____
◎次の三角比を45°以下の角の三角比で表そう。
⑦$\sin56°=$
⑧$\cos79°=$
⑨$\tan62°=$
⑩$\sin \theta=\displaystyle \frac{1}{\sqrt{ 5 }}$のとき、$\cos \theta,\tan \theta$の値を求めよう。ただし、$\theta$は鋭角とする。
この動画を見る
$0° \lt \theta \lt 90°$のとき
$\sin (90°-\theta)=$①____
$\cos(90°-\theta)=$②____
$\tan(90°-\theta)=$③____
$\tan \theta=$④____
$\sin^2 \theta+\cos^2 \theta=$⑤____
$1+\tan^2 \theta=$⑥____
◎次の三角比を45°以下の角の三角比で表そう。
⑦$\sin56°=$
⑧$\cos79°=$
⑨$\tan62°=$
⑩$\sin \theta=\displaystyle \frac{1}{\sqrt{ 5 }}$のとき、$\cos \theta,\tan \theta$の値を求めよう。ただし、$\theta$は鋭角とする。
【高校数学】 数Ⅰ-76 三角比① ・ 基本編

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0° \lt \theta \lt 90°$のとき、右の図について
$\sin \theta=$①____
$\cos \theta=$②____
$\tan \theta=$③____
◎図のような直角三角形において$\sin \theta,\cos \theta,tan \theta$の値をそれぞれ求めよう。
④
⑤
※図は動画内参照
この動画を見る
$0° \lt \theta \lt 90°$のとき、右の図について
$\sin \theta=$①____
$\cos \theta=$②____
$\tan \theta=$③____
◎図のような直角三角形において$\sin \theta,\cos \theta,tan \theta$の値をそれぞれ求めよう。
④
⑤
※図は動画内参照
【高校数学】 数Ⅰ-75 絶対値を含む関数のグラフ②

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$y=| 2x^2-4x-6 |$のグラフを書こう。
この動画を見る
◎$y=| 2x^2-4x-6 |$のグラフを書こう。
【高校数学】 数Ⅰ-74 絶対値を含む関数のグラフ①

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフを書き、その値域を求めよう。
①$y=| 2x+4 |(-3 \leqq x \leqq 1)$
②$y=| x |+| x-1 |$
この動画を見る
◎次の関数のグラフを書き、その値域を求めよう。
①$y=| 2x+4 |(-3 \leqq x \leqq 1)$
②$y=| x |+| x-1 |$
【高校数学】 数Ⅰ-72 2次関数と共有点⑤

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2次方程式$2x^2-5x+a=0$の1つの解が0と1の間にあり、ほかの解が2と3の間にあるように、定数aの値の範囲を定めよう。
この動画を見る
◎2次方程式$2x^2-5x+a=0$の1つの解が0と1の間にあり、ほかの解が2と3の間にあるように、定数aの値の範囲を定めよう。