数学(高校生)
数学(高校生)
山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
05年 山口大学
次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る
05年 山口大学
次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
東京理科大 3次方程式 解と係数 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
09年 東京理科大学
$x^3-2x^2+x+5=0$の3つの解を$a,b,c$とする。次の値を求めよ。
(1)$a^3+b^3+c^3$
(2)$a^4+b^4+c^4$
この動画を見る
09年 東京理科大学
$x^3-2x^2+x+5=0$の3つの解を$a,b,c$とする。次の値を求めよ。
(1)$a^3+b^3+c^3$
(2)$a^4+b^4+c^4$
高知大 漸化式 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
高知大学 過去問
初項$a_1=4$、$(2n+2)a_n-na_{(n+1)}-3n-6$($n=1,2,3,・・・$)であるとき次の問いに答えよ。
(1)一般項$a_n$を求めよ
(2)$\displaystyle \sum_{k=1}^n a_k$を求めよ
この動画を見る
高知大学 過去問
初項$a_1=4$、$(2n+2)a_n-na_{(n+1)}-3n-6$($n=1,2,3,・・・$)であるとき次の問いに答えよ。
(1)一般項$a_n$を求めよ
(2)$\displaystyle \sum_{k=1}^n a_k$を求めよ
佐賀大 三次関数 最大値・最小値 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
09年 佐賀大学
$0\lt p\lt1$の範囲のとき、$f(x)=x^3-(3p+2)x^2+8px$の $0\leqq x\leqq1$における最大値、最小値を求めよ
この動画を見る
09年 佐賀大学
$0\lt p\lt1$の範囲のとき、$f(x)=x^3-(3p+2)x^2+8px$の $0\leqq x\leqq1$における最大値、最小値を求めよ
【高校数学】微分①~平均変化率と微分係数~ 6-1【数学Ⅱ】

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
微分 平均変化率と微分係数についての説明動画です
この動画を見る
微分 平均変化率と微分係数についての説明動画です
京都大 整数問題 高校数学 Mathematics Japanese university entrance exam Kyoto University

単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
05年 京都大学過去問
a,bは整数で、$a^3-b^3=65$を満たす$(a,b)$を全て求めよ
この動画を見る
05年 京都大学過去問
a,bは整数で、$a^3-b^3=65$を満たす$(a,b)$を全て求めよ
筑波大 3倍角の公式と3次方程式 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#三角関数#筑波大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
09年 筑波大学過去問
(1)$\cos 3θ=4\cos ^3θ-\cos θ$を示せ
(2)$2\sin 80^\circ$は$x^3-3x+1=0$の解であることを示せ
(3)$x^3-3x+1=(x-2\sin 80^\circ)$×$(x-2\cosα)$×$(x-2\cosβ)$
となる$α、β(0^\circ\ltα\ltβ\lt180^\circ)$を求めよ
この動画を見る
09年 筑波大学過去問
(1)$\cos 3θ=4\cos ^3θ-\cos θ$を示せ
(2)$2\sin 80^\circ$は$x^3-3x+1=0$の解であることを示せ
(3)$x^3-3x+1=(x-2\sin 80^\circ)$×$(x-2\cosα)$×$(x-2\cosβ)$
となる$α、β(0^\circ\ltα\ltβ\lt180^\circ)$を求めよ
福田の入試問題解説〜北海道大学2012年理系数学第4問〜2次関数と2次不等式、領域

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)$$=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
この動画を見る
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)$$=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
東北大 指数不等式 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
96年 東北大学過去問
全ての実数$x$に対して$2^{2x+2}+2^x+1-a\gt0$が成り立つような実数$a$の範囲を求めよ
この動画を見る
96年 東北大学過去問
全ての実数$x$に対して$2^{2x+2}+2^x+1-a\gt0$が成り立つような実数$a$の範囲を求めよ
【高校数学】対数関数1.5~例題・応用~【数学Ⅱ】

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の方程式を解け。
(1)$ \log_2 x+\log_2 {(x-7)}=3$
次の不等式を解け。
(2) $2\log_2 {(2-x)}≧\log_2 x$
この動画を見る
次の方程式を解け。
(1)$ \log_2 x+\log_2 {(x-7)}=3$
次の不等式を解け。
(2) $2\log_2 {(2-x)}≧\log_2 x$
北海道大 二次方程式解と係数 整数 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#2次方程式と2次不等式#数学(高校生)#北海道大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
96年 北海道大学過去問
$x^2-2px+p^2-2p-1=0$の2解を$α、β$とする。
$\displaystyle \frac{1}{2}$・$\displaystyle \frac{(α-β)^2-2}{(α+β)^2+2}$が整数となる実数$P$を全て求めよ
この動画を見る
96年 北海道大学過去問
$x^2-2px+p^2-2p-1=0$の2解を$α、β$とする。
$\displaystyle \frac{1}{2}$・$\displaystyle \frac{(α-β)^2-2}{(α+β)^2+2}$が整数となる実数$P$を全て求めよ
和歌山大 4次関数と接線 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#岡山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。
(1)$f(x)$と$y=mx$で囲まれる面積を求めよ
(2)$m$の値と極大値を求めよ
この動画を見る
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。
(1)$f(x)$と$y=mx$で囲まれる面積を求めよ
(2)$m$の値と極大値を求めよ
早稲田(政経)格子点 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
96年 早稲田大学政治経済学部過去問
x-y平面に、互いに異なる 5個の格子点を選ぶ と、その中に次の性質を もつ格子点が少なくと も一対は存在することを示せ
※一対の格子点を結ぶ 線分の中点が格子点
この動画を見る
96年 早稲田大学政治経済学部過去問
x-y平面に、互いに異なる 5個の格子点を選ぶ と、その中に次の性質を もつ格子点が少なくと も一対は存在することを示せ
※一対の格子点を結ぶ 線分の中点が格子点
京都大 5倍角 高校数学 Mathematics Japanese university entrance exam Kyoto University

単元:
#大学入試過去問(数学)#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。
(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
この動画を見る
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。
(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
香川大 漸化式 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#数学(高校生)#香川大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
94年香川大学過去問
$a_1=1$,$a_2=3$
$a_{n+2}=a_{n+1}^2a_{n}^3$
数列{$a_{n}$}の一般項を求めよ
この動画を見る
94年香川大学過去問
$a_1=1$,$a_2=3$
$a_{n+2}=a_{n+1}^2a_{n}^3$
数列{$a_{n}$}の一般項を求めよ
【高校数学】対数関数1.5~例題・基礎~【数学Ⅱ】

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)$\log_2 3,\log_4 5,\log_{16} 36$の大小関係を不等号を用いて表せ。
次の方程式、不等式を解け。
(2)$\log_2 x=3$
(3)$\log_{0.5} x≧2$
この動画を見る
(1)$\log_2 3,\log_4 5,\log_{16} 36$の大小関係を不等号を用いて表せ。
次の方程式、不等式を解け。
(2)$\log_2 x=3$
(3)$\log_{0.5} x≧2$
香川大 4次関数と接線 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
1994年 国立大学法人香川大学
$f(x)=x^4-2x^2$
$(a,f(a))$における接線と$f(x)$との共有点の個数
この動画を見る
1994年 国立大学法人香川大学
$f(x)=x^4-2x^2$
$(a,f(a))$における接線と$f(x)$との共有点の個数
京都大学 整数問題 Mathematics Japanese university entrance exam Kyoto University

単元:
#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2018年 国立大学法人京都大学
$n^3-7n+9$が素数となる整数$n$を求めよ。
この動画を見る
2018年 国立大学法人京都大学
$n^3-7n+9$が素数となる整数$n$を求めよ。
京都大 4次方程式 虚数解 Mathematics Japanese university entrance exam Kyoto University

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
国立大学法人京都大学
$0°\leqqθ\lt90°$ $x$の4次方程式
$\{x^2-2(cosθ)x-cosθ+1\}×$
$\{x^2+2(tanθ)x+3\}=0$
は虚数解を少なくとも1つ持つことを示せ
この動画を見る
国立大学法人京都大学
$0°\leqqθ\lt90°$ $x$の4次方程式
$\{x^2-2(cosθ)x-cosθ+1\}×$
$\{x^2+2(tanθ)x+3\}=0$
は虚数解を少なくとも1つ持つことを示せ
慶応義塾 正奇数角形にできる鈍角三角形の数 Mathematics Japanese university entrance exam Keio University

単元:
#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2007年 慶應義塾大学
$(1)$正九角形の頂点を結んでできる$84$個の三角形のうち、
純角三角形は何個か。
$(2)$正$2n+1$角形の頂点を結んでできる純角三角形の個数。
この動画を見る
2007年 慶應義塾大学
$(1)$正九角形の頂点を結んでできる$84$個の三角形のうち、
純角三角形は何個か。
$(2)$正$2n+1$角形の頂点を結んでできる純角三角形の個数。
京都大 式の値域 Mathematics Japanese university entrance exam Kyoto University

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2012年 学校法人京都大学
実数$x,y$が$x^2+xy+y^2=6$を満たす
$x^2y+xy^2-x^2-2xy-y^2+x+y$のとりうる値の範囲
この動画を見る
2012年 学校法人京都大学
実数$x,y$が$x^2+xy+y^2=6$を満たす
$x^2y+xy^2-x^2-2xy-y^2+x+y$のとりうる値の範囲
東海大 4次方程式 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#微分法と積分法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東海大学
$x^4-2x^3+bx^2-2x+1=0$
$(1)$実数解をもつ$b$の値の範囲
$(2)$ちょうど$3$個の実数解をもつ$b$の値と実数解
この動画を見る
東海大学
$x^4-2x^3+bx^2-2x+1=0$
$(1)$実数解をもつ$b$の値の範囲
$(2)$ちょうど$3$個の実数解をもつ$b$の値と実数解
鳥取大 3項間漸化式 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
国立大学法人鳥取大学
$a_1=1,$$a_2=2$
$a_n$$_+$$_2$$a_{n+2}a_{n}=2(a_{n+1})^2$
$(1)$一般項$a_n$
$(2)$初項から第$n$項までの積
この動画を見る
国立大学法人鳥取大学
$a_1=1,$$a_2=2$
$a_n$$_+$$_2$$a_{n+2}a_{n}=2(a_{n+1})^2$
$(1)$一般項$a_n$
$(2)$初項から第$n$項までの積
【高校数学】数Ⅲ-124 変曲点とグラフの対称性

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(変曲点とグラフの対称性)
Q. 曲線$C:y=x^3+3ax+b$について次の問いに答えよ。
①Cの変曲点Pの座標を求めよ。
②Cは点Pに関して点対称であることを示せ。
この動画を見る
数Ⅲ(変曲点とグラフの対称性)
Q. 曲線$C:y=x^3+3ax+b$について次の問いに答えよ。
①Cの変曲点Pの座標を求めよ。
②Cは点Pに関して点対称であることを示せ。
数学の魔術師ヨビノリのたくみさん5度目の登場 東大入試問題 Mathematics Japanese university entrance examTokyo University

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
国立大学法人東京大学
$y=x^2$上に$P,Q$がある
線分$PQ$の中点の$y$座標を$h$
$(1)PQ$の長さ$L$と傾き$m$で$h$を表せ
$(2)L$を固定したときの$h$の最小値
この動画を見る
国立大学法人東京大学
$y=x^2$上に$P,Q$がある
線分$PQ$の中点の$y$座標を$h$
$(1)PQ$の長さ$L$と傾き$m$で$h$を表せ
$(2)L$を固定したときの$h$の最小値
数学の魔術師ヨビノリのたくみさん5度目の登場 東大入試問題 Mathematics Japanese university entrance examTokyo University

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'08東京大学過去問題
$y=x^2$上にP,Q
線分PQの中点のy座標をh
(1)PQの長さLと傾きmでhを表せ
(2)Lを固定したとき、hの最小値
この動画を見る
'08東京大学過去問題
$y=x^2$上にP,Q
線分PQの中点のy座標をh
(1)PQの長さLと傾きmでhを表せ
(2)Lを固定したとき、hの最小値
【高校数学】数Ⅲ-123 第2次導関数とグラフ④

単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(第2次導関数とグラフ④)
①$x^2-xy-y+x+2=0$の漸近線を求めよ。
➁$y=(\log x)^2$の概形を書け。
この動画を見る
数Ⅲ(第2次導関数とグラフ④)
①$x^2-xy-y+x+2=0$の漸近線を求めよ。
➁$y=(\log x)^2$の概形を書け。
【高校数学】数Ⅲ-122 第2次導関数とグラフ③

単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(第2次導関数とグラフ③)
①曲線$\frac{x^2-3x+4}{2x-2}$の概形を書け。
この動画を見る
数Ⅲ(第2次導関数とグラフ③)
①曲線$\frac{x^2-3x+4}{2x-2}$の概形を書け。
【高校数学】数Ⅲ-121 第2次導関数とグラフ②

単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(第2次導関数とグラフ➁)
①曲線$y=x+\frac{1}{x}$の概形を書け。
この動画を見る
数Ⅲ(第2次導関数とグラフ➁)
①曲線$y=x+\frac{1}{x}$の概形を書け。
でんがんとヨビノリを脇に添えてもっちゃんとバーゼル問題を解く!

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\frac{1}{1^2}+$$\frac{1}{2^2}+$$\frac{1}{3^2}・・・+$$\frac{1}{n^2}=$$\frac{\pi^2}{6}$
この動画を見る
$\frac{1}{1^2}+$$\frac{1}{2^2}+$$\frac{1}{3^2}・・・+$$\frac{1}{n^2}=$$\frac{\pi^2}{6}$
