数学(高校生)
数学(高校生)
【高校数学】数Ⅲ-14 ド・モアブルの定理③

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①方程式$z ^ 3 = - 2\sqrt2 i$を解こう.
この動画を見る
①方程式$z ^ 3 = - 2\sqrt2 i$を解こう.
【高校数学】数Ⅲ-13 ド・モアブルの定理②

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の値を計算しよう.
①$(\sqrt3 - i) ^ 4$
②$(1-1)^2$
③$\left(\dfrac{2}{- 1 + i}\right) ^{- 6}$
この動画を見る
次の値を計算しよう.
①$(\sqrt3 - i) ^ 4$
②$(1-1)^2$
③$\left(\dfrac{2}{- 1 + i}\right) ^{- 6}$
【高校数学】数Ⅲ-12 ド・モアブルの定理①

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の値を計算しよう.
②$\left(\dfrac{\sqrt3}{2}+\dfrac{1}{2}i\right)^{12}$
③$(1+i)^6$
この動画を見る
次の値を計算しよう.
②$\left(\dfrac{\sqrt3}{2}+\dfrac{1}{2}i\right)^{12}$
③$(1+i)^6$
【高校数学】数Ⅲ-11 複素数の積の図表示③

単元:
#数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$z_1=\sqrt3+i,z_2=2+2i$のとき,積$z_1z_2$を図示せよ.
②$\dfrac{1+\sqrt3i}{1+i}$を複素数平面上に図示しよう.
この動画を見る
①$z_1=\sqrt3+i,z_2=2+2i$のとき,積$z_1z_2$を図示せよ.
②$\dfrac{1+\sqrt3i}{1+i}$を複素数平面上に図示しよう.
【高校数学】数Ⅲ-10 複素数の積の図表示②

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①複素数$z$に対して,点$z$を原点$O$を中心として,
$\dfrac{5}{6}\pi$だけ回転した点を表す複素数$w_1$を求めよう.
②$z=-4-2i$とする.点$z$を原点$O$を中心として
$\dfrac{\pi}{3}$だけ回転した点を表す複素数$w_2$を求めよう.
③$z=-3-i$とする.点$z$を原点$O$を中心として,
$-\dfrac{\pi}{4}$だけ回転し,原点からの距離を$\sqrt2$倍に
拡大した点を表す複素数$w_3$を求めよう.
この動画を見る
①複素数$z$に対して,点$z$を原点$O$を中心として,
$\dfrac{5}{6}\pi$だけ回転した点を表す複素数$w_1$を求めよう.
②$z=-4-2i$とする.点$z$を原点$O$を中心として
$\dfrac{\pi}{3}$だけ回転した点を表す複素数$w_2$を求めよう.
③$z=-3-i$とする.点$z$を原点$O$を中心として,
$-\dfrac{\pi}{4}$だけ回転し,原点からの距離を$\sqrt2$倍に
拡大した点を表す複素数$w_3$を求めよう.
【数学】計算ミスを減らす4つの技術~数学の大失点を防ぐためにできること~おっちょこちょいでも今スグできる!【篠原好】

単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
数学の大失点を防ぐためにできること
「計算ミスを減らす方法」についてお話しています。
この動画を見る
数学の大失点を防ぐためにできること
「計算ミスを減らす方法」についてお話しています。
【高校数学】数Ⅲ-9 複素数の図表示①

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
空欄に適する数や言葉をいれよう.
点$(\sqrt3+3i)z$は,点$z$を①を中心に②だけ回転し,
原点からの距離$\vert z \vert$を③倍したものである.
点$\sqrt5(-1+i)z$は,点$z$を④を中心に⑤だけ回転し,
原点からの距離$\vert z \vert$を⑥倍したものである.
この動画を見る
空欄に適する数や言葉をいれよう.
点$(\sqrt3+3i)z$は,点$z$を①を中心に②だけ回転し,
原点からの距離$\vert z \vert$を③倍したものである.
点$\sqrt5(-1+i)z$は,点$z$を④を中心に⑤だけ回転し,
原点からの距離$\vert z \vert$を⑥倍したものである.
【高校数学】数Ⅲ-8 複素数の積と商②

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\alpha=1-i,\beta=\sqrt3+i$とする.
ただし,偏角は$0\leqq \theta \lt 2\pi$とする.
①$\alpha\beta,\dfrac{\alpha}{\beta}$をそれぞれ極形式で表そう.
②$arg\beta^4, \left\vert\dfrac{\alpha^2}{\beta^2}\right \vert$をそれぞれ求めよう.
この動画を見る
$\alpha=1-i,\beta=\sqrt3+i$とする.
ただし,偏角は$0\leqq \theta \lt 2\pi$とする.
①$\alpha\beta,\dfrac{\alpha}{\beta}$をそれぞれ極形式で表そう.
②$arg\beta^4, \left\vert\dfrac{\alpha^2}{\beta^2}\right \vert$をそれぞれ求めよう.
【高校数学】数Ⅲ-7 複素数の積と商①

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
⑦$z_1=2\left(\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\right),z_2=5\left(\cos\dfrac{2}{3}\pi+i\sin\dfrac{2}{3}\pi\right)$のとき,
$z_1 z_2$と,$\dfrac{z_1}{z_2}$を求めよう.
この動画を見る
⑦$z_1=2\left(\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\right),z_2=5\left(\cos\dfrac{2}{3}\pi+i\sin\dfrac{2}{3}\pi\right)$のとき,
$z_1 z_2$と,$\dfrac{z_1}{z_2}$を求めよう.
【高校数学】数Ⅲ-6 複素数の極形式②

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の複素数を極形式で表そう.
ただし,偏角$\theta$は$0\leqq \theta \lt 2\pi$とする.
①$1-i$
②$-\sqrt3+i$
③$3+\sqrt3 i$
④$\dfrac{-5+i}{2-3i}$
この動画を見る
次の複素数を極形式で表そう.
ただし,偏角$\theta$は$0\leqq \theta \lt 2\pi$とする.
①$1-i$
②$-\sqrt3+i$
③$3+\sqrt3 i$
④$\dfrac{-5+i}{2-3i}$
【高校数学】数Ⅲ-5 複素数の極形式①

単元:
#数Ⅱ#複素数と方程式#複素数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の複素数を極形式で表そう.
ただし,偏角$\theta$は$0\leqq \theta \lt 2\pi$とする.
④$1+i$
⑤$-2$
この動画を見る
次の複素数を極形式で表そう.
ただし,偏角$\theta$は$0\leqq \theta \lt 2\pi$とする.
④$1+i$
⑤$-2$
【高校数学】数Ⅲ-4 複素数の絶対値・2点間の距離②

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\alpha=3+(2x-1)i,\beta=x+2-i$とする.
2点$A(\alpha),B(\beta)$と原点$O$が一直線上に
あるとき,実数$x$の値を求めよ.
②$z$を複素数とするとき,$\vert z \vert = \vert \overline{z} \vert = \vert -z \vert$を証明せよ.
この動画を見る
①$\alpha=3+(2x-1)i,\beta=x+2-i$とする.
2点$A(\alpha),B(\beta)$と原点$O$が一直線上に
あるとき,実数$x$の値を求めよ.
②$z$を複素数とするとき,$\vert z \vert = \vert \overline{z} \vert = \vert -z \vert$を証明せよ.
【高校数学】数Ⅲ-3 複素数の絶対値・2点間の距離①

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\boxed{1}$次の複素数の絶対値を求めよう.
③$3+i$
④$-2i$
⑤$1-\sqrt3$
$\boxed{2}$次の2点間の距離を求めよう.
⑥$A(5-2i),B(1-i)$
⑦$A(-1-3i),B(3-5i)$
この動画を見る
$\boxed{1}$次の複素数の絶対値を求めよう.
③$3+i$
④$-2i$
⑤$1-\sqrt3$
$\boxed{2}$次の2点間の距離を求めよう.
⑥$A(5-2i),B(1-i)$
⑦$A(-1-3i),B(3-5i)$
【高校数学】数Ⅲ-2 複素数平面・共役な複素数②

単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
複素数$z$が,$2z-5\overline{z}=-9+14i$を満たすとき,
共役複素数の性質を利用して$z$を求めよ.
この動画を見る
複素数$z$が,$2z-5\overline{z}=-9+14i$を満たすとき,
共役複素数の性質を利用して$z$を求めよ.
【高校数学】数Ⅲ-1 複素数平面・共役な複素数①

単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$z=1+2i$とする.
複素平面上に次の点を図示しよう.
⑤$A(Z)$
⑥$B(-Z)$
⑦$C(\overline{ Z})$
⑧$D(-\overline{Z})$
図は動画内参照
この動画を見る
$z=1+2i$とする.
複素平面上に次の点を図示しよう.
⑤$A(Z)$
⑥$B(-Z)$
⑦$C(\overline{ Z})$
⑧$D(-\overline{Z})$
図は動画内参照
【高校受験対策】数学-死守26

単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#確率#円#一次不等式(不等式・絶対値のある方程式・不等式)#文章題#文章題その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$-3+8$を計算しなさい.
②$2(2x - y) - (x - y)$を計算しなさい.
③$\sqrt{27}-\sqrt{63}$を計算しなさい.
④$(x + 5)(x - 3)$を展開しなさい.
⑤$a(b + 8) - (b + 8)$を因数分解しなさい.
⑥2次方程式 $x ^ 2 + x = 3$を解きなさい.
⑦右の図1の円$O$において,
$\angle x$と$\angle y$の大きさをそれぞれ求めなさい.
⑧鉛筆1本の値段を$a$円,ノート1冊の値段を$b$円とする.
「鉛筆3本とノート1冊の代金を払うと,
300円でおつりがもらえた」という数量の関係を,
不等式で表しなさい.ただし,値段は税込みとする.
⑨箱の中に,25本の当たりを含むたくさんのくじが入っている.
このくじをよくかき混ぜた後,48人がこの箱から1人1回ずつくじを引いたところ,
当たりが2本出た.箱の中に最初に入っていたくじの本数は,
およそ何本であったと推定できるか,求めなさい.
⑩ある水族館の入館料は,おとな3人と子ども2人で入ると4020円かかり,
おとな1人と子ども3人で入ると2600円かかる.
おとな1人,子ども1人の入館料をそれぞれ求めなさい.
ただし,入館料は税込みとする.
図は動画内参照
この動画を見る
①$-3+8$を計算しなさい.
②$2(2x - y) - (x - y)$を計算しなさい.
③$\sqrt{27}-\sqrt{63}$を計算しなさい.
④$(x + 5)(x - 3)$を展開しなさい.
⑤$a(b + 8) - (b + 8)$を因数分解しなさい.
⑥2次方程式 $x ^ 2 + x = 3$を解きなさい.
⑦右の図1の円$O$において,
$\angle x$と$\angle y$の大きさをそれぞれ求めなさい.
⑧鉛筆1本の値段を$a$円,ノート1冊の値段を$b$円とする.
「鉛筆3本とノート1冊の代金を払うと,
300円でおつりがもらえた」という数量の関係を,
不等式で表しなさい.ただし,値段は税込みとする.
⑨箱の中に,25本の当たりを含むたくさんのくじが入っている.
このくじをよくかき混ぜた後,48人がこの箱から1人1回ずつくじを引いたところ,
当たりが2本出た.箱の中に最初に入っていたくじの本数は,
およそ何本であったと推定できるか,求めなさい.
⑩ある水族館の入館料は,おとな3人と子ども2人で入ると4020円かかり,
おとな1人と子ども3人で入ると2600円かかる.
おとな1人,子ども1人の入館料をそれぞれ求めなさい.
ただし,入館料は税込みとする.
図は動画内参照
【高校受験対策】数学-死守20

単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#数と式#比例・反比例#確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#単位・比と割合・比例・反比例
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$(-2)+11$を計算しなさい.
②$(- 4) ^ 2 \times (- 3)$を計算しなさい.
③$(6a - 15b) \div 3$を計算しなさい.
④$(2x - 1)(x + 3)$を展開しなさい.
⑤$x ^ 2 - (y + 3) ^ 2$ を因数分解しなさい.
⑥方程式$\dfrac{x - 2}{4} + \dfrac{2 - 5x}{6} = 1$を解きなさい.
⑦$y$は$x$に反比例し,$x = 2$ のとき $y = - 3$ である.
このとき,$y$を$x$の式で表しなさい.
⑧次のア~オの中から,無理数をすべて選び,記号で答えなさい.
ア.$\dfrac{1}{3}$
イ.$\sqrt5$
ウ.$0.25$
エ.$-2\sqrt3$
オ.$\sqrt6$
⑨右の図のア~エは,関数$y = ax ^ 2$のグラフである.
次の(1),(2)の問いに答えなさい.
(1)関数$y=\dfrac{1}{2}x^2$のグラフを,ア~エから選びなさい.
(2)$x$の値が$-2$から$-1$まで増加するときの
変化の割合が最も大きい関数のグラフを,ア~エから選びなさい.
また,そのときの変化の割合を求めなさい.
⑩袋の中に$0,1,2,3$の数字が1つずつ書かれた4個の玉が入っている.
この袋から玉を1個取り出して玉に書かれた数字を確認して,
それを袋の中にもどしてから,また1個取り出すとき,
(1)取り出した2個の玉に書かれていた数字が同じになる確率を求めなさい.
(2)次の$\Box$に適することばを入れて,
求める確率が$\dfrac{1}{4}$となる問題を1つ完成させなさい.
「取り出した2個の玉の数字の積が$\Box$になる確率を求めなさい.」
図は動画内参照
この動画を見る
①$(-2)+11$を計算しなさい.
②$(- 4) ^ 2 \times (- 3)$を計算しなさい.
③$(6a - 15b) \div 3$を計算しなさい.
④$(2x - 1)(x + 3)$を展開しなさい.
⑤$x ^ 2 - (y + 3) ^ 2$ を因数分解しなさい.
⑥方程式$\dfrac{x - 2}{4} + \dfrac{2 - 5x}{6} = 1$を解きなさい.
⑦$y$は$x$に反比例し,$x = 2$ のとき $y = - 3$ である.
このとき,$y$を$x$の式で表しなさい.
⑧次のア~オの中から,無理数をすべて選び,記号で答えなさい.
ア.$\dfrac{1}{3}$
イ.$\sqrt5$
ウ.$0.25$
エ.$-2\sqrt3$
オ.$\sqrt6$
⑨右の図のア~エは,関数$y = ax ^ 2$のグラフである.
次の(1),(2)の問いに答えなさい.
(1)関数$y=\dfrac{1}{2}x^2$のグラフを,ア~エから選びなさい.
(2)$x$の値が$-2$から$-1$まで増加するときの
変化の割合が最も大きい関数のグラフを,ア~エから選びなさい.
また,そのときの変化の割合を求めなさい.
⑩袋の中に$0,1,2,3$の数字が1つずつ書かれた4個の玉が入っている.
この袋から玉を1個取り出して玉に書かれた数字を確認して,
それを袋の中にもどしてから,また1個取り出すとき,
(1)取り出した2個の玉に書かれていた数字が同じになる確率を求めなさい.
(2)次の$\Box$に適することばを入れて,
求める確率が$\dfrac{1}{4}$となる問題を1つ完成させなさい.
「取り出した2個の玉の数字の積が$\Box$になる確率を求めなさい.」
図は動画内参照
【高校受験対策】数学-死守18

単元:
#数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#2次方程式#比例・反比例#確率#点と直線
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.
①$15 - 9\div 3$を計算しなさい.
②$\dfrac{2}{7}\times \dfrac{3}{4}$を計算しなさい .
③$-5-3+7$を計算しなさい.
④$(3x - 2y) + 5(x - 4y)$ を計算しなさい.
⑤$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=2 \\
x+2y=-6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.
⑦$\sqrt{15}\times \sqrt6 +\sqrt{10}$を計算しなさい.
⑧$x^2-2x-63$を因数分解しなさい.
⑧方程式$ 2x ^ 2 + 9x + 8 = 0$ を解きなさい.
⑨右の図のように,平行な2直線$\ell,m$があり,直線上に2点$A,B$
直線$m$上に2点$C,D$がある.
$AB=BC, \angle BCD = 42°$のとき,$\angle BAC$の大きさを求めなさい.
⑩下の表は,$y$が$x$に反比例する関係を表したものです.
表のⒶにあてはまる数を求めなさい.
⑪数字を書いた3枚のカード$①,②,③$が袋$A$の中に,
数字を書いた5枚のカード$①,②,③,④,⑤$が袋$B$の中に入っています.
それぞれの袋からカードを1枚ずつ取り出すとき,
その2枚のカードに書いてある数の積が奇数になる確率を求めなさい.
図は動画内参照
この動画を見る
次の各問いに答えなさい.
①$15 - 9\div 3$を計算しなさい.
②$\dfrac{2}{7}\times \dfrac{3}{4}$を計算しなさい .
③$-5-3+7$を計算しなさい.
④$(3x - 2y) + 5(x - 4y)$ を計算しなさい.
⑤$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=2 \\
x+2y=-6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.
⑦$\sqrt{15}\times \sqrt6 +\sqrt{10}$を計算しなさい.
⑧$x^2-2x-63$を因数分解しなさい.
⑧方程式$ 2x ^ 2 + 9x + 8 = 0$ を解きなさい.
⑨右の図のように,平行な2直線$\ell,m$があり,直線上に2点$A,B$
直線$m$上に2点$C,D$がある.
$AB=BC, \angle BCD = 42°$のとき,$\angle BAC$の大きさを求めなさい.
⑩下の表は,$y$が$x$に反比例する関係を表したものです.
表のⒶにあてはまる数を求めなさい.
⑪数字を書いた3枚のカード$①,②,③$が袋$A$の中に,
数字を書いた5枚のカード$①,②,③,④,⑤$が袋$B$の中に入っています.
それぞれの袋からカードを1枚ずつ取り出すとき,
その2枚のカードに書いてある数の積が奇数になる確率を求めなさい.
図は動画内参照
付け焼き刃の数学勉強法~偏差値84.9の数学「直前」対策~今からセンター試験で突破する受験生の数学対策【篠原好】

単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
今からセンター試験で突破する受験生の数学対策!
「付け焼き刃の数学勉強法」についてお話しています。
この動画を見る
今からセンター試験で突破する受験生の数学対策!
「付け焼き刃の数学勉強法」についてお話しています。
数学の応用問題対策!模試の(3)をとる方法~数学偏差値84.9の数学勉強法~難しい問題でも結果を出す方法【篠原好】

単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
数学の応用問題対策!模試の(3)をとる方法!
「数学の解き切る力」についてお話しています。
この動画を見る
数学の応用問題対策!模試の(3)をとる方法!
「数学の解き切る力」についてお話しています。
東大式!数学攻略術!【篠原好】

単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
現役東大医学部生「宇佐見さん」より「数学の攻略術」についてお話いただいています。
この動画を見る
現役東大医学部生「宇佐見さん」より「数学の攻略術」についてお話いただいています。
【高校受験対策】数学-文章題3

単元:
#その他#文章題#文章題その他#その他#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①ある会社の昨年の男性の従業員数と女性の従業員数の比は$7:3$でした.
今年は,昨年に比べて,男性の従業員数が5人減り,
女性の従業員数が4人増えたので,
男性の従業員数が女性の従業員数の$2$倍になりました.
このとき,今年の男性の従業員数を求めなさい.
②1本$a$円の鉛筆5本と$b$円の筆箱1個を買うのに
$1000$円をだすとおつりがきた.
この数量の関係を不等式で表しなさい.
③ある商店では,商品$A$と商品$B$を売っています.
今月,商品$B$を商品$A$よりも$10$個多く仕入れ販売したところ,
今日までに商品$A$は仕入れた個数の$15$%の個数が売れ,
商品$B$は仕入れた個数の$40$%の個数が売れて,
商品$A$と商品$B$を合わせると,
今月仕入れた個数の合計の$28$%の個数が売れました.
このとき,商品$B$の売れ残った個数を求めなさい.
この動画を見る
①ある会社の昨年の男性の従業員数と女性の従業員数の比は$7:3$でした.
今年は,昨年に比べて,男性の従業員数が5人減り,
女性の従業員数が4人増えたので,
男性の従業員数が女性の従業員数の$2$倍になりました.
このとき,今年の男性の従業員数を求めなさい.
②1本$a$円の鉛筆5本と$b$円の筆箱1個を買うのに
$1000$円をだすとおつりがきた.
この数量の関係を不等式で表しなさい.
③ある商店では,商品$A$と商品$B$を売っています.
今月,商品$B$を商品$A$よりも$10$個多く仕入れ販売したところ,
今日までに商品$A$は仕入れた個数の$15$%の個数が売れ,
商品$B$は仕入れた個数の$40$%の個数が売れて,
商品$A$と商品$B$を合わせると,
今月仕入れた個数の合計の$28$%の個数が売れました.
このとき,商品$B$の売れ残った個数を求めなさい.
センス不要!レベル別「数学」の成長戦略~5ステップで数学を段階的にできるようにして偏差値80を取る方法【篠原好】

数学の演習は書いて行うべきか?~数学偏差値84.9の勉強法~数学は書く?それとも読む?できるようになるための秘策とは?!【篠原好】

単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
数学は書く?それとも読む?できるようになるための秘策とは?!
「数学の演習は書いて行うべきか?」についてお話しています。
この動画を見る
数学は書く?それとも読む?できるようになるための秘策とは?!
「数学の演習は書いて行うべきか?」についてお話しています。
数学の本質~たった3つだけ注意して結果を出す方法~偏差値84.9を文系でもたたき出す数学の勉強法【篠原好】

単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
たった3つだけ注意して結果を出す方法!
「数学の本質」についてお話しています。
この動画を見る
たった3つだけ注意して結果を出す方法!
「数学の本質」についてお話しています。
【BGM無版】早大生とコラボ!(第1回)~早大の数学ってどうなんですか?【篠原好】

単元:
#大学入試過去問(数学)#その他#数学(高校生)#その他
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【第1回】早大生の鈴木さんとコラボ!
「早大の数学」についてお話をいただいています。
この動画を見る
【第1回】早大生の鈴木さんとコラボ!
「早大の数学」についてお話をいただいています。
早大生とコラボ!(第1回)~早大の数学ってどうなんですか?【篠原好】

単元:
#大学入試過去問(数学)#その他#数学(高校生)#その他
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【第1回】早大生の鈴木さんとコラボ!
「早大の数学」についてお話をいただいています。
この動画を見る
【第1回】早大生の鈴木さんとコラボ!
「早大の数学」についてお話をいただいています。
【定期テスト対策】学年順位を80番上がった1か月で奇跡を起こす勉強法

単元:
#その他#英語(高校生)#勉強法・その他#勉強法#勉強法#その他#勉強法#数学(高校生)#理科(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
学年順位を80番上がった1か月で奇跡を起こす勉強法!
「定期テストの勉強法」についてお話しています。
この動画を見る
学年順位を80番上がった1か月で奇跡を起こす勉強法!
「定期テストの勉強法」についてお話しています。
【受験対策】数学-関数12

単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①右の図1は, $y = 2x,y = 3x,y =-2x,y =-3x$の
グラフをそれぞれ表している.
このとき,$y =-2x$のグラフを
ア~エから1つ選び,その記号を書きなさい.
右の図2で,直線$\ell$は関数$y =\dfrac{1}{2}x - 3$ のグラフ,
直線$m$は$y = \dfrac{1}{2}x + 5$ のグラフで,
2点,$A,B$は直線$\ell$上の点,2点$C,D$は直線$m$上の点で,
四角形$ABDC$は平行四辺形である.
点$A$の$x$座標が$-2$,点$B$の$y$座標が$-1$のとき,
次の②,③に答えなさい.
②点$C$の$x$座標が$3$のとき,点$D$の座標を求めなさい.
③ 四角形$ABDC$の面積を求めなさい.
図は動画内参照
この動画を見る
①右の図1は, $y = 2x,y = 3x,y =-2x,y =-3x$の
グラフをそれぞれ表している.
このとき,$y =-2x$のグラフを
ア~エから1つ選び,その記号を書きなさい.
右の図2で,直線$\ell$は関数$y =\dfrac{1}{2}x - 3$ のグラフ,
直線$m$は$y = \dfrac{1}{2}x + 5$ のグラフで,
2点,$A,B$は直線$\ell$上の点,2点$C,D$は直線$m$上の点で,
四角形$ABDC$は平行四辺形である.
点$A$の$x$座標が$-2$,点$B$の$y$座標が$-1$のとき,
次の②,③に答えなさい.
②点$C$の$x$座標が$3$のとき,点$D$の座標を求めなさい.
③ 四角形$ABDC$の面積を求めなさい.
図は動画内参照
【受験対策】数学-図形8

単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①半径3cmである半球の表面積を求めなさい.
② 右の図1のおうぎ形について,周の長さが$(3\pi+24)cm$のとき,
このおうぎ形の面積を求めなさい.
③右の図2で,四角形$ABCD$は,$AD//BC,AD\lt BC$の台形で,
辺$CD$の中点を$E$とし,辺$BC$の延長と$AE$の延長との交点を$F$とする.
また,頂点$B$から辺$CD$に平行にひいた直線と$EA$の延長との交点を$G$とする.
$\triangle ABF$の面積が$15cm^2$のとき,
$ \triangle DFG$の面積を求めなさい.
図は動画内参照
この動画を見る
①半径3cmである半球の表面積を求めなさい.
② 右の図1のおうぎ形について,周の長さが$(3\pi+24)cm$のとき,
このおうぎ形の面積を求めなさい.
③右の図2で,四角形$ABCD$は,$AD//BC,AD\lt BC$の台形で,
辺$CD$の中点を$E$とし,辺$BC$の延長と$AE$の延長との交点を$F$とする.
また,頂点$B$から辺$CD$に平行にひいた直線と$EA$の延長との交点を$G$とする.
$\triangle ABF$の面積が$15cm^2$のとき,
$ \triangle DFG$の面積を求めなさい.
図は動画内参照
