数学(高校生)
数学(高校生)
福田のおもしろ数学114〜円の接線の公式の証明

単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上の点($a$,$b$)における接線の方程式は
$ax$+$by$=$r^2$ であることを証明せよ。
この動画を見る
円$x^2$+$y^2$=$r^2$ 上の点($a$,$b$)における接線の方程式は
$ax$+$by$=$r^2$ であることを証明せよ。
指数方程式

絶対値と式の値 岡山理科大

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x-\frac{1}{x}=2$
$|x+\frac{1}{x}|=?$
岡山理科大学
この動画を見る
$x-\frac{1}{x}=2$
$|x+\frac{1}{x}|=?$
岡山理科大学
福田の数学〜東北大学2024年理系第1問〜放物線と接線と面積

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $a$を正の実数とし、$f(x)$=$x^2$-$2ax$+$4a^2$ とする。Oを原点とする$xy$平面上の放物線C:$y$=$f(x)$の頂点をAとする。直線OAとCの交点のうちAと異なるものをP($p$,$f(p)$)とし、OからCへ引いた接線の接点をQ($q$,$f(q)$)とする。ただし、$q$>0 とする。
(1)$p$,$q$の値を$a$を用いて表せ。また、$p$>$q$であることを示せ。
(2)放物線Cの$q$≦$x$≦$p$の部分、線分OP、および線分OQで囲まれた図形の面積をSとおく。Sを$a$を用いて表せ。
(3)(2)のSに対し、S=$\frac{2}{3}$ となるときの$a$の値を求めよ。
この動画を見る
$\Large{\boxed{1}}$ $a$を正の実数とし、$f(x)$=$x^2$-$2ax$+$4a^2$ とする。Oを原点とする$xy$平面上の放物線C:$y$=$f(x)$の頂点をAとする。直線OAとCの交点のうちAと異なるものをP($p$,$f(p)$)とし、OからCへ引いた接線の接点をQ($q$,$f(q)$)とする。ただし、$q$>0 とする。
(1)$p$,$q$の値を$a$を用いて表せ。また、$p$>$q$であることを示せ。
(2)放物線Cの$q$≦$x$≦$p$の部分、線分OP、および線分OQで囲まれた図形の面積をSとおく。Sを$a$を用いて表せ。
(3)(2)のSに対し、S=$\frac{2}{3}$ となるときの$a$の値を求めよ。
#藤田医科大学(2005) #極限 #Shorts

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n log(1+\displaystyle \frac{k}{n})^\frac{1}{n}$
出典:2005年藤田医科大学
この動画を見る
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n log(1+\displaystyle \frac{k}{n})^\frac{1}{n}$
出典:2005年藤田医科大学
6年間ずっと同じクラスの確率は?

【高校数学】模試までに整理すればまだ間に合う!統計的な推測 2週間完成【⑤母集団と標本】
単元:
#確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
・母平均120、母標準偏差30をもつ母集団から大きさ100の無作為標本を抽出するとき、その標本平均$\bar{X}$が123より大きい値をとる確率を求めよ。
・ある国の有権者の内閣支持率が50%であるとき、無作為に抽出した400人の有権者の内閣支持率をRとする。Rが48%以上、52%以下である確率を求めよ。
この動画を見る
・母平均120、母標準偏差30をもつ母集団から大きさ100の無作為標本を抽出するとき、その標本平均$\bar{X}$が123より大きい値をとる確率を求めよ。
・ある国の有権者の内閣支持率が50%であるとき、無作為に抽出した400人の有権者の内閣支持率をRとする。Rが48%以上、52%以下である確率を求めよ。
福田のおもしろ数学113〜1分チャレンジ〜連立方程式を解こう

単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の連立方程式を解け。ただし、$a$,$b$,$c$は0ではない異なる実数とする。
$\begin{array}{1}
a^3x+a^2y+az=1 ...①\\
b^3x+b^2y+bz=1 ...②\\
c^3x+c^2y+cz=1 ...③\\
\end{array}$
この動画を見る
次の連立方程式を解け。ただし、$a$,$b$,$c$は0ではない異なる実数とする。
$\begin{array}{1}
a^3x+a^2y+az=1 ...①\\
b^3x+b^2y+bz=1 ...②\\
c^3x+c^2y+cz=1 ...③\\
\end{array}$
大学入試問題#792「なぜサムネに『も』をいれてんだ」 #早稲田大学人間科学部(2024)

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$x$が実数であるとき$x(x+1)(x+2)(x+3)$の最小値を求めよ。
出典:2024年早稲田大学人間科学部 入試問題
この動画を見る
$x$が実数であるとき$x(x+1)(x+2)(x+3)$の最小値を求めよ。
出典:2024年早稲田大学人間科学部 入試問題
福田の数学〜北海道大学2024年文系第4問〜正八面体のサイコロと反復試行の確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 各面に1つずつ数が書かれた正八面体のさいころがある。「1」、「2」、「3」が書かれた面がそれぞれ1つずつあり、残りの5つの面には「0」が書かれている。このさいころを水平な面に投げて、出た面に書かれた数を持ち点に加えるという試行を考える。最初の持ち点は0とし、この試行を繰り返す。例えば、3回の試行を行ったとき、出た面に書かれた数が「0」、「2」、「3」であれば、持ち点は5となる。なお、さいころが水平な床面にあるとき、さいころの上部の水平な面を出た面とよぶ。また、さいころを投げるとき、各面が出ることは同様に確からしいとする。
(1)この試行を2回行ったとき、持ち点が1である確率を求めよ。
(2)この試行を4回行ったとき、持ち点が10以下である確率を求めよ。
この動画を見る
$\Large{\boxed{4}}$ 各面に1つずつ数が書かれた正八面体のさいころがある。「1」、「2」、「3」が書かれた面がそれぞれ1つずつあり、残りの5つの面には「0」が書かれている。このさいころを水平な面に投げて、出た面に書かれた数を持ち点に加えるという試行を考える。最初の持ち点は0とし、この試行を繰り返す。例えば、3回の試行を行ったとき、出た面に書かれた数が「0」、「2」、「3」であれば、持ち点は5となる。なお、さいころが水平な床面にあるとき、さいころの上部の水平な面を出た面とよぶ。また、さいころを投げるとき、各面が出ることは同様に確からしいとする。
(1)この試行を2回行ったとき、持ち点が1である確率を求めよ。
(2)この試行を4回行ったとき、持ち点が10以下である確率を求めよ。
【高校数学】整数の性質 方程式の問題ではこうやって範囲を絞り込もう!

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式$xy+yz+zx=xyz$を満たす自然数
$x,y,z$の組をすべて求めよ。
この動画を見る
方程式$xy+yz+zx=xyz$を満たす自然数
$x,y,z$の組をすべて求めよ。
福田のおもしろ数学112〜多変数の式の最大最小

単元:
#数Ⅱ#図形と方程式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
実数$x$,$y$,$z$が0≦$x$≦1, 0≦$y$≦1, 2≦$z$≦3 を満たして変わるとき、$\displaystyle\frac{z-y}{z-x}$ の最大値、最小値を求めよ。
この動画を見る
実数$x$,$y$,$z$が0≦$x$≦1, 0≦$y$≦1, 2≦$z$≦3 を満たして変わるとき、$\displaystyle\frac{z-y}{z-x}$ の最大値、最小値を求めよ。
分母の有理化しなくていい。式の値 関西大

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a+b=3 , ab=1 ,a > b
$\frac{\sqrt a - \sqrt b}{\sqrt a + \sqrt b}=?$
関西大学
この動画を見る
a+b=3 , ab=1 ,a > b
$\frac{\sqrt a - \sqrt b}{\sqrt a + \sqrt b}=?$
関西大学
大学入試問題#793「教科書の章末問題!?」 #室蘭工業大学(2018) #数列

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#室蘭工業大学
指導講師:
ますただ
問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}, a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$を満たす数列$\{a_n\}$を求めよ。
出典:2018年室蘭工業大学 入試問題
この動画を見る
$a_1=\displaystyle \frac{1}{2}, a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$を満たす数列$\{a_n\}$を求めよ。
出典:2018年室蘭工業大学 入試問題
福田の数学〜北海道大学2024年文系第3問〜3次関数のグラフと面積

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $a$を0でない実数とする。$C$を$y$=$-x^3$+$x^2$ で表される曲線、$l$を$y$=$a$ で表される直線とし、$C$と$l$は共有点をちょうど2つもつとする。
(1)$a$の値を求めよ。
(2)$C$と$l$の共有点の$x$座標をすべて求めよ。
(3)$C$と$l$で囲まれた図形の面積を求めよ。
この動画を見る
$\Large{\boxed{3}}$ $a$を0でない実数とする。$C$を$y$=$-x^3$+$x^2$ で表される曲線、$l$を$y$=$a$ で表される直線とし、$C$と$l$は共有点をちょうど2つもつとする。
(1)$a$の値を求めよ。
(2)$C$と$l$の共有点の$x$座標をすべて求めよ。
(3)$C$と$l$で囲まれた図形の面積を求めよ。
【高校数学】正規分布はこれ1本でマスター!統計的な推測 2週間完成【④正規分布】
単元:
#確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
・1000人の生徒に数学のテストを行ったところ、その成績は平均48点、標準偏差15点であった。成績が正規分布に従うものとするとき、次の問いに答えよ。
(1) ある生徒の点数が78点以上である確率を求めよ。
(2) 78点以上の生徒は約何人いると考えられるか。
(3) 30点以下の生徒は約何人いると考えられるか。
・ある植物の種子の発芽率は80%であるという。この植物の種子を900個まいたとき、次の問いに答えよ。
(1) 750個以上の種子が発芽する確率を求めよ。
(2) 900個のうちn個以上の種子が発芽する確率が80%以上となるようなnの最大値を求めよ。
この動画を見る
・1000人の生徒に数学のテストを行ったところ、その成績は平均48点、標準偏差15点であった。成績が正規分布に従うものとするとき、次の問いに答えよ。
(1) ある生徒の点数が78点以上である確率を求めよ。
(2) 78点以上の生徒は約何人いると考えられるか。
(3) 30点以下の生徒は約何人いると考えられるか。
・ある植物の種子の発芽率は80%であるという。この植物の種子を900個まいたとき、次の問いに答えよ。
(1) 750個以上の種子が発芽する確率を求めよ。
(2) 900個のうちn個以上の種子が発芽する確率が80%以上となるようなnの最大値を求めよ。
福田のおもしろ数学111〜論証力をチェックしよう〜3変数の基本対称式の性質

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師:
福田次郎
問題文全文(内容文):
実数$a$,$b$,$c$が$a$+$b$+$c$>0, $ab$+$bc$+$ca$>0, $abc$>0 を満たすとき、$a$>0, $b$>0, $c$>0 であることを証明せよ。
この動画を見る
実数$a$,$b$,$c$が$a$+$b$+$c$>0, $ab$+$bc$+$ca$>0, $abc$>0 を満たすとき、$a$>0, $b$>0, $c$>0 であることを証明せよ。
大学入試問題#792「初手が重要!!」 #室蘭工業大学(2020) #定積分

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#室蘭工業大学
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+x-2}{(2x+1)(x^2+x+1)}$と定める。
定積分$\displaystyle \int_{0}^{\frac{\pi}{2}} f(\cos^2x) \sin(2x)dx$の値を求めよ。
出典:2020年室蘭工業大学 入試問題
この動画を見る
$f(x)=\displaystyle \frac{x^2+x-2}{(2x+1)(x^2+x+1)}$と定める。
定積分$\displaystyle \int_{0}^{\frac{\pi}{2}} f(\cos^2x) \sin(2x)dx$の値を求めよ。
出典:2020年室蘭工業大学 入試問題
福田の数学〜北海道大学2024年文系第2問〜漸化式を解く

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 次の条件によって定められる数列$\left\{a_n\right\}$について考える。
$a_1$=3, $a_{n+1}$=$3a_n$-$\displaystyle\frac{3^{n+1}}{n(n+1)}$
(1)$b_n$=$\frac{a_n}{3^n}$ とおくとき、$b_{n+1}$を$b_n$と$n$の式で表せ。
(2)数列$\left\{a_n\right\}$ の一般項を求めよ。
この動画を見る
$\Large{\boxed{2}}$ 次の条件によって定められる数列$\left\{a_n\right\}$について考える。
$a_1$=3, $a_{n+1}$=$3a_n$-$\displaystyle\frac{3^{n+1}}{n(n+1)}$
(1)$b_n$=$\frac{a_n}{3^n}$ とおくとき、$b_{n+1}$を$b_n$と$n$の式で表せ。
(2)数列$\left\{a_n\right\}$ の一般項を求めよ。
【高校数学】整数の性質 約数の総和に関する問題はこうやって解く!
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$N=p^2q$($p,q$は異なる素数)と表される数で
約数の総和が$2N$に等しいものをすべて求めよ。
この動画を見る
$N=p^2q$($p,q$は異なる素数)と表される数で
約数の総和が$2N$に等しいものをすべて求めよ。
#62.5 #数検1級1次 #有理化 #Shorts

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 2 }}{1+\sqrt{ 2 }+\sqrt{ 3 }}$を有理化せよ
出典:数検1級1次
この動画を見る
$\displaystyle \frac{\sqrt{ 2 }}{1+\sqrt{ 2 }+\sqrt{ 3 }}$を有理化せよ
出典:数検1級1次
「安定の良問」 by にっし~Diaryさん #極限

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x\{\sin(\displaystyle \frac{1}{x})-\sin(\sin(\displaystyle \frac{1}{x}))\}}{1-x\ \sin(\displaystyle \frac{1}{x})}$
この動画を見る
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x\{\sin(\displaystyle \frac{1}{x})-\sin(\sin(\displaystyle \frac{1}{x}))\}}{1-x\ \sin(\displaystyle \frac{1}{x})}$
新高1よ。見よ。ここで差がつく方程式

福田の数学〜北海道大学2024年文系第1問〜約数の個数と総和

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ 次の問いに答えよ。
(1)自然数$m$, $n$について、$2^m・3^n$の正の約数の個数を求めよ。
(2)6912の正の約数のうち、12で割り切れないものの総和を求めよ。
この動画を見る
$\Large{\boxed{1}}$ 次の問いに答えよ。
(1)自然数$m$, $n$について、$2^m・3^n$の正の約数の個数を求めよ。
(2)6912の正の約数のうち、12で割り切れないものの総和を求めよ。
【高校数学】模試に向けて今からでも間に合う!統計的な推測 2週間完成【③二項分布】
単元:
#確率分布と統計的な推測#確率分布#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
・次の二項分布の平均、分散と標準偏差を求めよ。
$\displaystyle B(5,\frac{1}{6})$
・1個のさいころを8回投げるとき、4以上の目が出る回数をXとする。
(1) 4以上の目が3回以上出る確率を求めよ。
(2) 確率変数Xの期待値と標準偏差を求めよ。
この動画を見る
・次の二項分布の平均、分散と標準偏差を求めよ。
$\displaystyle B(5,\frac{1}{6})$
・1個のさいころを8回投げるとき、4以上の目が出る回数をXとする。
(1) 4以上の目が3回以上出る確率を求めよ。
(2) 確率変数Xの期待値と標準偏差を求めよ。
福田の数学〜北海道大学2024年理系第5問〜対数関数の増減凹凸と面積

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ 関数$f(x)$=$x\log(x+2)$+1 ($x$>-2)
を考える。$y$=$f(x)$で表される曲線を$C$とする。$C$の接線のうち傾きが正で原点を通るものを$l$とする。ただし$\log t$は$t$の自然対数である。
(1)直線$l$の方程式を求めよ。
(2)曲線$C$は下に凸であることを証明せよ。
(3)$C$と$l$および$y$軸で囲まれた部分の面積を求めよ。
この動画を見る
$\Large{\boxed{5}}$ 関数$f(x)$=$x\log(x+2)$+1 ($x$>-2)
を考える。$y$=$f(x)$で表される曲線を$C$とする。$C$の接線のうち傾きが正で原点を通るものを$l$とする。ただし$\log t$は$t$の自然対数である。
(1)直線$l$の方程式を求めよ。
(2)曲線$C$は下に凸であることを証明せよ。
(3)$C$と$l$および$y$軸で囲まれた部分の面積を求めよ。
#62 #数検1級1次過去問 #因数分解

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
次の式を係数が整数の範囲で因数分解せよ。
$x^6-14x^4+17x^2-4$
出典:数検1級1次
この動画を見る
次の式を係数が整数の範囲で因数分解せよ。
$x^6-14x^4+17x^2-4$
出典:数検1級1次
福田のおもしろ数学108〜虚数単位iは数直線上に存在するか

二次方程式の応用

単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x^2-2x-5=0$の解をp,q (p<q)
$x^2-2x-7=0$の解をr,s (r<s)
(p-r)(p-s)(r-p)(r-q)=?
この動画を見る
$x^2-2x-5=0$の解をp,q (p<q)
$x^2-2x-7=0$の解をr,s (r<s)
(p-r)(p-s)(r-p)(r-q)=?
大学入試問題#791「第一感で大丈夫」 #慶應義塾大学環境情報学部(2024)

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$x,y$を正の実数とするとき
$27x+\displaystyle \frac{3x}{y^2}+\displaystyle \frac{2y}{x}$の最小値を求めよ。
また、そのときの$x,y$の値を求めよ。
出典:2024年慶應義塾大学環境情報学部 入試問題
この動画を見る
$x,y$を正の実数とするとき
$27x+\displaystyle \frac{3x}{y^2}+\displaystyle \frac{2y}{x}$の最小値を求めよ。
また、そのときの$x,y$の値を求めよ。
出典:2024年慶應義塾大学環境情報学部 入試問題
