4S数学ⅢのB問題解説

【数Ⅲ】【積分とその応用】面積3 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線で囲まれた図形の面積を求めよ。
(1) y²=x²(1-x)
(2) |y+1|=x|x-3|
この動画を見る
次の曲線で囲まれた図形の面積を求めよ。
(1) y²=x²(1-x)
(2) |y+1|=x|x-3|
【数Ⅲ】【積分とその応用】面積2 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の楕円によって囲まれた図形の面積を求めよ。
(1) 2x²+3y²=6
(2) 3x²+4y²=1
この動画を見る
次の楕円によって囲まれた図形の面積を求めよ。
(1) 2x²+3y²=6
(2) 3x²+4y²=1
【数Ⅲ】【積分とその応用】面積1 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた図形の面積を求めよ。
(1) ,
(2) ,
(3) , ,
(4) ,
(5) ,
この動画を見る
次の曲線や直線で囲まれた図形の面積を求めよ。
(1)
(2)
(3)
(4)
(5)
【数Ⅲ】【積分とその応用】定積分部分積分 ※問題文は概要欄

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
定積分 を求めよ。
定積分 を最小にする実数 の値を求めよ。
定積分 を求めよ。
自然数 について、 とする。
(1) を求めよ。
(2) を を用いて表せ。
(3) を求めよ。
この動画を見る
定積分
定積分
定積分
自然数
(1)
(2)
(3)
【数Ⅲ】【積分とその応用】定積分置換積分 ※問題文は概要欄

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
(1)
(2)
(3)
(4)
(5)
(6)
次の定積分を求めよ。ただし、 は正の定数とする。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
次のことが成り立つことを証明せよ。
(1)
(2)
(3)
(4) のとき
この動画を見る
次の定積分を求めよ。
(1)
(2)
(3)
(4)
(5)
(6)
次の定積分を求めよ。ただし、
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
次のことが成り立つことを証明せよ。
(1)
(2)
(3)
(4)
【数Ⅲ】【積分とその応用】定積分置換積分、部分積分 ※問題文は概要欄

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次を求めよ
(1)
(2)
(3)
(4)
次を求めよ
(1)
(2)
は正の整数とする。次の定積分を求めよ。
(1)
(2)
(3)
定積分 を最小にする定数 の値を求めよ。
この動画を見る
次を求めよ
(1)
(2)
(3)
(4)
次を求めよ
(1)
(2)
(1)
(2)
(3)
定積分
【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分3 ※問題文は概要欄

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1)
(2)
(3)
(4)
次の不定積分を求めよ。
(1)
(2)
(3)
(4)
次の不定積分を求めよ。
(1)
(2)
次の不定積分を求めよ。
(1)
(2)
(3)
この動画を見る
次の不定積分を求めよ。
(1)
(2)
(3)
(4)
次の不定積分を求めよ。
(1)
(2)
(3)
(4)
次の不定積分を求めよ。
(1)
(2)
次の不定積分を求めよ。
(1)
(2)
(3)
【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分2 ※問題文は概要欄

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1)
(2)
(1)次の等式が成り立つように、定数 の値を定めよ。
(2)不定積分 を求めよ。
次の不定積分を求めよ。
(1)
(2)
(3)
(4)
(5)
(6)
次の不定積分を求めよ。
(1)
(2)
この動画を見る
次の不定積分を求めよ。
(1)
(2)
(1)次の等式が成り立つように、定数
(2)不定積分
次の不定積分を求めよ。
(1)
(2)
(3)
(4)
(5)
(6)
次の不定積分を求めよ。
(1)
(2)
【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分1 ※問題文は概要欄

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1)
(2)
(3)
(4)
(5)
(6)
次の不定積分を求めよ。
(1)
(2)
次の不定積分を求めよ。
(1)
(2)
不定積分 を求めよ。
この動画を見る
次の不定積分を求めよ。
(1)
(2)
(3)
(4)
(5)
(6)
次の不定積分を求めよ。
(1)
(2)
次の不定積分を求めよ。
(1)
(2)
不定積分
【数Ⅲ】【微分とその応用】関数の最大と最小11 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
一直線をなす海岸の地点Aから海岸線に垂直に9km離れた沖の船にいる人が、Aから海岸にそって15km離れた地点Bに最短時間で到着するためには、AB間のAからどれだけ離れた地点に上陸すればよいか。ただし、地点B以外で上陸した場合、上陸した後は歩いて地点Bに向かうものとし、船の速さは4km/h、人の歩く速さは5km/hとする。
この動画を見る
一直線をなす海岸の地点Aから海岸線に垂直に9km離れた沖の船にいる人が、Aから海岸にそって15km離れた地点Bに最短時間で到着するためには、AB間のAからどれだけ離れた地点に上陸すればよいか。ただし、地点B以外で上陸した場合、上陸した後は歩いて地点Bに向かうものとし、船の速さは4km/h、人の歩く速さは5km/hとする。
【数Ⅲ】【微分とその応用】関数の最大と最小10 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
半径rの球に外接する直円錐について
(1) 体積の最小値を求めよ
(2) 表面積の最小値を求めよ
この動画を見る
半径rの球に外接する直円錐について
(1) 体積の最小値を求めよ
(2) 表面積の最小値を求めよ
【数Ⅲ】【微分とその応用】関数の最大と最小9 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
定点A(a,b)を通る傾きが負の直線と、x軸およびy軸とが作る三角形の面積Sの最小値を求めよ。ただし、a>0,b>0とする。
この動画を見る
定点A(a,b)を通る傾きが負の直線と、x軸およびy軸とが作る三角形の面積Sの最小値を求めよ。ただし、a>0,b>0とする。
【数Ⅲ】【微分とその応用】関数の最大と最小4 ※問題文は概要欄

単元:
#微分とその応用#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 が で極小値 をとるように、定数 の値を定めよ。また、 の極大値を求めよ。
この動画を見る
関数
【数Ⅲ】【微分とその応用】関数の最大と最小3 ※問題文は概要欄

単元:
#微分とその応用#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 が で極値をとるように、定数 の値を定めよ。
この動画を見る
関数
【数Ⅲ】【微分とその応用】関数の最大と最小2 ※問題文は概要欄

単元:
#微分とその応用#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数の極値を求めよ。
(1)
(2)
(3)
この動画を見る
次の関数の極値を求めよ。
(1)
(2)
(3)
【数Ⅲ】【微分とその応用】関数の最大と最小1 ※問題文は概要欄

単元:
#微分とその応用#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 の増減を調べよ。
この動画を見る
関数
【数Ⅲ】【微分とその応用】平均値の定理の利用4 ※問題文は概要欄

単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
平均値の定理を用いて、次の極限を求めよ。
(1) lim[x→+0](e^x-e^(tanx))/(x-tanx)
(2) lim[x→ 0](e^x-e^(sinx))/(x-sinx)
(3) lim[x→∞]x{log(x+2)-logx}
この動画を見る
平均値の定理を用いて、次の極限を求めよ。
(1) lim[x→+0](e^x-e^(tanx))/(x-tanx)
(2) lim[x→ 0](e^x-e^(sinx))/(x-sinx)
(3) lim[x→∞]x{log(x+2)-logx}
【数Ⅲ】【微分とその応用】平均値の定理の利用3 ※問題文は概要欄

単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
k、αは定数、関数f(x)は微分可能であるとする。
lim[x→∞]f'(x)=αのとき、lim[x→∞]{f(x+k)-f(x)}を求めよ。
この動画を見る
k、αは定数、関数f(x)は微分可能であるとする。
lim[x→∞]f'(x)=αのとき、lim[x→∞]{f(x+k)-f(x)}を求めよ。
【数Ⅲ】【微分とその応用】平均値の定理の利用2 ※問題文は概要欄

単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
平均値の定理を用いて、次のことが成り立つことを証明せよ。
(1) 1/e²<a<b<1のとき、a-b<blogb-aloga<b-a
(2) |sinα-sinβ|≦|αーβ|
この動画を見る
平均値の定理を用いて、次のことが成り立つことを証明せよ。
(1) 1/e²<a<b<1のとき、a-b<blogb-aloga<b-a
(2) |sinα-sinβ|≦|αーβ|
【数Ⅲ】【微分とその応用】平均値の定理の利用1 ※問題文は概要欄

単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数について、f'(x)=0を満たすxは存在するか。
(1) f(x)=xcosx (0≦x≦π/2)
(2) f(x)=1-|x-2| (1≦x≦3)
この動画を見る
次の関数について、f'(x)=0を満たすxは存在するか。
(1) f(x)=xcosx (0≦x≦π/2)
(2) f(x)=1-|x-2| (1≦x≦3)
【数Ⅲ】【微分とその応用】n次導関数と微分の表し方 ※問題文は概要欄

単元:
#微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数について, を求めよ。ただし (1)(2)では を用いて表してもよい。また(3)(4)では、t$$ の関数として表せ。 は正の定数とする。
の関数 が、 を媒介変数として と表せるとき、 を の関数として表せ。
この動画を見る
次の関数について,
【数Ⅲ】【微分とその応用】導関数の応用1 ※問題文は概要欄

単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
媒介変数 で表された次の曲線について、( )内の の値に対応する点における接線の方程式を求めよ。
次の曲線について、与えられた点を通る接線の方程式を求めよ。
曲線 において、傾きが である接線の方程式を求めよ。
この動画を見る
媒介変数
次の曲線について、与えられた点を通る接線の方程式を求めよ。
曲線
【数Ⅲ】【微分とその応用】n次導関数基本 ※問題文は概要欄

単元:
#微分とその応用#微分法#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数の第3次導関数を求めよ。
y= √ (2x+1)
以下、略
次のことが成り立つことを証明せよ。
y= x√ (1+x²)のとき、(1+x²)y'' + xy' = 4y
以下、略
この動画を見る
次の関数の第3次導関数を求めよ。
y= √ (2x+1)
以下、略
次のことが成り立つことを証明せよ。
y= x√ (1+x²)のとき、(1+x²)y'' + xy' = 4y
以下、略
【数Ⅲ】【微分とその応用】色々な関数の微分2 ※問題文は概要欄

単元:
#微分とその応用#色々な関数の導関数#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
対数微分法により次の関数を微分せよ。ただし、aは定数とする。
y= (x+1)²/((x+2)³(x+3)⁴)
以下、略
次の関数を微分せよ。ただし x>0 とする。
y= x^sinx
以下、略
lim_(k→0) (1+k)^(1/k)=e を用いて、次の極限を求めよ。
lim_(x→0) ((log(1+x)/x)
以下、略
この動画を見る
対数微分法により次の関数を微分せよ。ただし、aは定数とする。
y= (x+1)²/((x+2)³(x+3)⁴)
以下、略
次の関数を微分せよ。ただし x>0 とする。
y= x^sinx
以下、略
lim_(k→0) (1+k)^(1/k)=e を用いて、次の極限を求めよ。
lim_(x→0) ((log(1+x)/x)
以下、略
【数Ⅲ】【微分とその応用】微分計算の基本2 ※問題文は概要欄

単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
すべての実数に対して 1+2x-3x²≦f(x)≦1+2x+3x² が成り立つようなf(x)がある。このときf'(0)を求めよ。
この動画を見る
すべての実数に対して 1+2x-3x²≦f(x)≦1+2x+3x² が成り立つようなf(x)がある。このときf'(0)を求めよ。
【数Ⅲ】【微分とその応用】色々な関数の微分1 ※問題文は概要欄

単元:
#微分とその応用#色々な関数の導関数#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)
次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)
次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
この動画を見る
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)
次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)
次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
【数Ⅲ】【微分とその応用】不等式の応用6 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
aは定数とする。次の方程式の異なる実数解の個数を求めよ。
(2)では、必要ならば を用いてよい。
(1) =0
(2)
この動画を見る
aは定数とする。次の方程式の異なる実数解の個数を求めよ。
(2)では、必要ならば
(1)
(2)
【数Ⅲ】【微分とその応用】不等式の応用5 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のことが成り立つことを証明せよ。
のとき
この動画を見る
次のことが成り立つことを証明せよ。
【数Ⅲ】【微分とその応用】不等式の応用4 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
のとき、 が と比較して、
より急速に増大すること、すなわち
が成り立つことを証明せよ。
ただし、まずは次の①~③のどれか1つを証明し、それを利用せよ。
① のとき、 が成り立つ
② のとき、 が成り立つ
③ のとき、 が成り立つ
この動画を見る
より急速に増大すること、すなわち
が成り立つことを証明せよ。
ただし、まずは次の①~③のどれか1つを証明し、それを利用せよ。
①
②
③
【数Ⅲ】【微分とその応用】不等式の応用3 ※問題文は概要欄

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
すべての正の数xに対して、
不等式 が成り立つような定数aの値の範囲を求めよ。
この動画を見る
すべての正の数xに対して、
不等式