4S数学ⅢのB問題解説
4S数学ⅢのB問題解説
【数Ⅲ】【関数と極限】次の方程式の実数解の存在する区間をすべて求めよ。ただし、区間は幅1の開区間とし、その両端は整数値とする。(1) 2x³+3x²-12x-3=0(2) x³+x²-2x-1=0

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の方程式の実数解の存在する区間をすべて求めよ。ただし、区間は幅1の
開区間とし、その両端は整数値とする。
(1) 2x³+3x²-12x-3=0
(2) x³+x²-2x-1=0
この動画を見る
次の方程式の実数解の存在する区間をすべて求めよ。ただし、区間は幅1の
開区間とし、その両端は整数値とする。
(1) 2x³+3x²-12x-3=0
(2) x³+x²-2x-1=0
【数Ⅲ】【関数と極限】関数f(x)が連続でf(0)=-1、f(1)=2、f(2)=1、f(3)=4のとき、方程式f(x)=xは0<x<3の範囲に少なくとも3個の実数解をもつことを示せ。

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
【数Ⅲ】【関数と極限】グラフをかき、その連続性について調べよ。(1) y=lim 1+x/1+xΛ2n(2) y=lim x-1/1+|x|Λn(3) y=lim nsin2x+1/ncos²x+1

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかき、その連続性について調べよ。
(1) $y=\displaystyle \lim_{n\to\infty}\frac{1+x}{1+x^{2n}}$
(2) $y=\displaystyle \lim_{n\to\infty}\frac{x-1}{1+|x|^{n}}$
(3) $y=\displaystyle \lim_{n\to\infty}\frac{n\sin 2x+1}{n\cos^2 x+1}$
この動画を見る
次の関数のグラフをかき、その連続性について調べよ。
(1) $y=\displaystyle \lim_{n\to\infty}\frac{1+x}{1+x^{2n}}$
(2) $y=\displaystyle \lim_{n\to\infty}\frac{x-1}{1+|x|^{n}}$
(3) $y=\displaystyle \lim_{n\to\infty}\frac{n\sin 2x+1}{n\cos^2 x+1}$
【数Ⅲ】【関数と極限】無限級数x+x/1+|x|+x/(1+|x|)²+……+x/(1+|x|)Λn-1+……をf(x)とおく。無限級数がすべての実数xに対して収束することを示せ。連続性について調べよ

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
無限級数
$x+\dfrac{x}{1+|x|}+\dfrac{x}{(1+|x|)^2}+\cdots+\dfrac{x}{(1+|x|)^{n-1}}+\cdots$
の和を $f(x)$ とおく。
この無限級数がすべての実数 $x$ に対して収束することを示せ。
また、関数 $y=f(x)$ のグラフをかき、
その連続性について調べよ。
この動画を見る
無限級数
$x+\dfrac{x}{1+|x|}+\dfrac{x}{(1+|x|)^2}+\cdots+\dfrac{x}{(1+|x|)^{n-1}}+\cdots$
の和を $f(x)$ とおく。
この無限級数がすべての実数 $x$ に対して収束することを示せ。
また、関数 $y=f(x)$ のグラフをかき、
その連続性について調べよ。
【数Ⅲ】【関数と極限】次の関数f(x)において、定義されないxの値、不連続であるxの値をいえ。(1) f(x)=x²-2x-3/x-3(2) f(x)=x³/|x|(3) f(x)=[|cosx|]

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数 f(x) において、定義されない x の値、
不連続である x の値をいえ。
また、それらの x の値で、関数の値を改めて定義し、
すべての実数 x で連続になるようにせよ。
(1) $f(x)=\frac{x^2-2x-3}{x-3}$
(2) $f(x)=\frac{x^3}{|x|}$
(3) $f(x)=[[ \cos x ]]$
この動画を見る
次の関数 f(x) において、定義されない x の値、
不連続である x の値をいえ。
また、それらの x の値で、関数の値を改めて定義し、
すべての実数 x で連続になるようにせよ。
(1) $f(x)=\frac{x^2-2x-3}{x-3}$
(2) $f(x)=\frac{x^3}{|x|}$
(3) $f(x)=[[ \cos x ]]$
【数Ⅲ】【関数と極限】次の関数f(x)の定義域をいえ。また、定義域における連続性について調べよ。(1) f(x)=x+1/x²-1(2) f(x)=x-[x]

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数 f(x) の定義域をいえ。
また、定義域における連続性について調べよ。
(1) $f(x)=\dfrac{x+1}{x^2-1}$
(2) $f(x)=x-[x]$
この動画を見る
次の関数 f(x) の定義域をいえ。
また、定義域における連続性について調べよ。
(1) $f(x)=\dfrac{x+1}{x^2-1}$
(2) $f(x)=x-[x]$
【数Ⅲ】【関数と極限】等式lim ax+b/cosx = 1/2が成り立つように、定数a、bの値を定めよ。

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
等式 $\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{ax + b}{\cos x} = \frac{1}{2}$
が成り立つように$,$ 定数 $a,b$ の値を定めよ。
この動画を見る
等式 $\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{ax + b}{\cos x} = \frac{1}{2}$
が成り立つように$,$ 定数 $a,b$ の値を定めよ。
【数Ⅲ】【関数と極限】半径aの円Oの周上に動点Pと定点Aがある。Aにおける接線上にAQ=APであるような点Qを直線OAに関してPと同じ側にとる。PがAに限りなく近づくときPQ/⌒AP²の極限値を求めよ

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
半径 $a$ の円 $\mathrm{O}$ の周上に動点 $\mathrm{P}$ と定点 $\mathrm{A}$ がある。
$\mathrm{A}$ における接線上に
$\mathrm{AQ = AP}$ であるような点 $\mathrm{Q}$ を直線 $\mathrm{OA}$ に関して $\mathrm{P}$ と同じ側にとる。
$\mathrm{P}$ が $\mathrm{A}$ に限りなく近づくとき$,$ $\displaystyle \frac{\mathrm{PQ}}{\mathrm{\stackrel{\huge\frown}{AP}}^2}$ の極限値を求めよ。
ただし$,$ $\mathrm{\stackrel{\huge\frown}{AP}}$ は $\angle \mathrm{AOP}$ ($\displaystyle 0 \lt \angle \mathrm{AOP} \lt \frac{\pi}{2}$)に対する
弧 $\mathrm{AP}$ の長さを表す。
この動画を見る
半径 $a$ の円 $\mathrm{O}$ の周上に動点 $\mathrm{P}$ と定点 $\mathrm{A}$ がある。
$\mathrm{A}$ における接線上に
$\mathrm{AQ = AP}$ であるような点 $\mathrm{Q}$ を直線 $\mathrm{OA}$ に関して $\mathrm{P}$ と同じ側にとる。
$\mathrm{P}$ が $\mathrm{A}$ に限りなく近づくとき$,$ $\displaystyle \frac{\mathrm{PQ}}{\mathrm{\stackrel{\huge\frown}{AP}}^2}$ の極限値を求めよ。
ただし$,$ $\mathrm{\stackrel{\huge\frown}{AP}}$ は $\angle \mathrm{AOP}$ ($\displaystyle 0 \lt \angle \mathrm{AOP} \lt \frac{\pi}{2}$)に対する
弧 $\mathrm{AP}$ の長さを表す。
【数Ⅲ】【関数と極限】次の極限を求めよ。(1) lim x²cos1/x(2) lim 1+sinx/x

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} x^2 \cos \frac{1}{x}$
(2) $\displaystyle \lim_{x \to - \infty} \frac{1 + \sin x}{x}$
この動画を見る
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} x^2 \cos \frac{1}{x}$
(2) $\displaystyle \lim_{x \to - \infty} \frac{1 + \sin x}{x}$
【数Ⅲ】【関数と極限】次の極限を求めよ。(1) lim 1-cos3x/x²(2) lim sinx²/1-cosx

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{1 - \cos {3x}}{x^2}$
(2) $\displaystyle \lim_{x \to 0} \frac{\sin x^2}{1 - \cos x}$
この動画を見る
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{1 - \cos {3x}}{x^2}$
(2) $\displaystyle \lim_{x \to 0} \frac{\sin x^2}{1 - \cos x}$
【数Ⅲ】【関数と極限】(1)lim tanx°/x(2)lim sin(x-π)/x-π(3)lim (x-π/2)tanx(4)lim sinπx/x-1(5)lim sin(sinx)/sinx

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{\tan x^{\circ}}{x}$
(2) $\displaystyle \lim_{x \to \pi} \frac{\sin (x - \pi)}{x - \pi}$
(3) $\displaystyle \lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \tan x$
(4) $\displaystyle \lim_{x \to 1} \frac{\sin \pi x}{x-1}$
(5) $\displaystyle \lim_{x \to 0} \frac{\sin (\sin x)}{\sin x}$
(6) $\displaystyle \lim_{x \to \infty} x \sin \frac{1}{2x}$
この動画を見る
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{\tan x^{\circ}}{x}$
(2) $\displaystyle \lim_{x \to \pi} \frac{\sin (x - \pi)}{x - \pi}$
(3) $\displaystyle \lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \tan x$
(4) $\displaystyle \lim_{x \to 1} \frac{\sin \pi x}{x-1}$
(5) $\displaystyle \lim_{x \to 0} \frac{\sin (\sin x)}{\sin x}$
(6) $\displaystyle \lim_{x \to \infty} x \sin \frac{1}{2x}$
【数Ⅲ】【極限】Σ(n=1→∞)1/nは正の無限大に発散する。このことを用いて、 Σ(n=1→∞)1/√nが発散することを示せ。

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n} $は正の無限大に発散することを用いて、
$\displaystyle \sum_{n=1}^{\infty} \frac{1}{\sqrt n}$が発散することを示せ。
この動画を見る
$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n} $は正の無限大に発散することを用いて、
$\displaystyle \sum_{n=1}^{\infty} \frac{1}{\sqrt n}$が発散することを示せ。
【数Ⅲ】【極限】収束、発散について調べその和を求めよ (1)3-5/2+5/2-7/3+7/3-9/4+9/4-11/5+… (2)1+1/2+1/3+1/4+1/9+1/8+1/27+1/16+…

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の無限級数の収束・発散について調べ、
収束する場合は、その和を求めよ。
$3 - \frac{5}{2} + \frac{5}{2} - \frac{7}{3} + \frac{7}{3} - \frac{9}{4} + \frac{9}{4}- \frac{11}{5}…$
$1+\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{9}+ \frac{1}{8} + \frac{1}{27} + \frac{1}{16} +…$
この動画を見る
次の無限級数の収束・発散について調べ、
収束する場合は、その和を求めよ。
$3 - \frac{5}{2} + \frac{5}{2} - \frac{7}{3} + \frac{7}{3} - \frac{9}{4} + \frac{9}{4}- \frac{11}{5}…$
$1+\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{9}+ \frac{1}{8} + \frac{1}{27} + \frac{1}{16} +…$
【数Ⅲ】【微分】f'(x)+f(x)=4xe^{-x}sin2x, f(0)=0を満たすとする(1) g(x)=e^xf(x)とおくとg'(x)=4xsin2xとなることを示せ(2) f(x)を求めよ

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
f(x) は微分可能な関数で $f'(x) + f(x) = 4xe^{-x} \sin 2x$,$f(0) = 0$ を満たすとする。
(1)$g(x) = e^x f(x)$とおくと、$g'(x) = 4x \sin 2x$ となることを示せ。
(2) f(x)を求めよ。
この動画を見る
f(x) は微分可能な関数で $f'(x) + f(x) = 4xe^{-x} \sin 2x$,$f(0) = 0$ を満たすとする。
(1)$g(x) = e^x f(x)$とおくと、$g'(x) = 4x \sin 2x$ となることを示せ。
(2) f(x)を求めよ。
【数Ⅲ】【微分】(1) y'=(2x-1)³ [x=0のときy=1](2) (2-x)y'=1 [x=1のときy=0](3) y'=y²cosx/(sinx+1)² [x=0のときy=1]

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
yはxの関数とする。
次の微分方程式を、[ ]内の初期条件のもとで解け。
(1) $\quad y' = (2x - 1)^3$ [x = 0 のとき y = 1]
(2) $\quad (2 - x)y' = 1$ [x = 1 のとき y = 0]
(3) $\quad y' = \displaystyle \frac{y^2 \cos x}{(\sin x + 1)^2}$ [x = 0 のとき y = 1]
この動画を見る
yはxの関数とする。
次の微分方程式を、[ ]内の初期条件のもとで解け。
(1) $\quad y' = (2x - 1)^3$ [x = 0 のとき y = 1]
(2) $\quad (2 - x)y' = 1$ [x = 1 のとき y = 0]
(3) $\quad y' = \displaystyle \frac{y^2 \cos x}{(\sin x + 1)^2}$ [x = 0 のとき y = 1]
【数Ⅲ】【微分】yはxの関数とする。次の微分方程式を解け。(1) dy/dx=y/x(2) xy'+1=y(3) (x-1)dy/dx+(y-1)=0(4) (1-x²)y'+xy=0

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
yはxの関数とする。次の微分方程式を解け。
$\frac{dy}{dx} = \frac{y}{x}$
$xy'+ 1 = y$
$(x - 1)\frac{dy}{dx} + (y - 1) = 0$
$(1 - x^2)y' + xy = 0$
この動画を見る
yはxの関数とする。次の微分方程式を解け。
$\frac{dy}{dx} = \frac{y}{x}$
$xy'+ 1 = y$
$(x - 1)\frac{dy}{dx} + (y - 1) = 0$
$(1 - x^2)y' + xy = 0$
【数Ⅲ】【微分】yはxの関数とする。次の微分方程式を解け。kは0でない定数とする。(1) dy/dx=2x+1(2) dy/dx=coskx(3) dy/dx=2/x(4) dy/dx=e^{kx}

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
$y$は$x$の関数とする。次の微分方程式を解け。
ただし$k$は$0$でない定数とする。
(1) $\dfrac{dy}{dx}=2x+1$ (2) $\dfrac{dy}{dx}=\cos kx$
(3) $\dfrac{dy}{dx}=\dfrac2x$ (4) $\dfrac{dy}{dx}=e^{kx}$
この動画を見る
$y$は$x$の関数とする。次の微分方程式を解け。
ただし$k$は$0$でない定数とする。
(1) $\dfrac{dy}{dx}=2x+1$ (2) $\dfrac{dy}{dx}=\cos kx$
(3) $\dfrac{dy}{dx}=\dfrac2x$ (4) $\dfrac{dy}{dx}=e^{kx}$
【数Ⅲ】【微分】f(b)-f(a)/b-a=f'(c),a<c<bにおいてb-a=h,c-a/b-a=θとおくと f(a+h)=f(a)+hf'(a+θh),0<θ<1 と表されることを示せ

単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$f(x)$は閉区間$[a,b]$で連続で、開区間$(a,b)$で微分可能であるとする。
平均値の定理の式
$\dfrac{f(b)-f(a)}{b-a}=f'(c),a< c< b$
において
$b-a=h, \dfrac{c-a}{b-a}=\theta$とおくと
$f(a+h)=f(a)+hf'(a+\theta h),0 < \theta < 1$
と表されることを示せ。
この動画を見る
関数$f(x)$は閉区間$[a,b]$で連続で、開区間$(a,b)$で微分可能であるとする。
平均値の定理の式
$\dfrac{f(b)-f(a)}{b-a}=f'(c),a< c< b$
において
$b-a=h, \dfrac{c-a}{b-a}=\theta$とおくと
$f(a+h)=f(a)+hf'(a+\theta h),0 < \theta < 1$
と表されることを示せ。
【数Ⅲ】【微分】 f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0 のとき次を示せ。 (1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1

単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
微分可能な関数f(x)とすべての実数x,yについて次の等式が成り立っている。
f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0
このとき、次のことが成り立つことを示せ。
(1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1
この動画を見る
微分可能な関数f(x)とすべての実数x,yについて次の等式が成り立っている。
f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0
このとき、次のことが成り立つことを示せ。
(1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1
【数Ⅲ】【関数】f(x)={0 (-1≦x≦1),|x|-1(x<-1,1<x), g(x)={x²-1(x<0), x-1(0≦x)で(gof)(x),(fog)(x)を求めよ。

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\begin{eqnarray}
f(x)
=
\begin{cases}
0 & ( -1 \leqq x \leqq 1 ) \\
|x|-1 & ( x < -1, 1 < x )
\end{cases}
\end{eqnarray}$
$\begin{eqnarray} g(x)
=
\begin{cases}
x^2-1 & ( x < 0 ) \\
x-1 & ( 0\leqq x )
\end{cases}
\end{eqnarray}$
であるとき、
$(g\circ f)(-3),(f\circ g)(-3),(g\circ f)(x),(f\circ g)(x)$
を求めよ。
この動画を見る
$\begin{eqnarray}
f(x)
=
\begin{cases}
0 & ( -1 \leqq x \leqq 1 ) \\
|x|-1 & ( x < -1, 1 < x )
\end{cases}
\end{eqnarray}$
$\begin{eqnarray} g(x)
=
\begin{cases}
x^2-1 & ( x < 0 ) \\
x-1 & ( 0\leqq x )
\end{cases}
\end{eqnarray}$
であるとき、
$(g\circ f)(-3),(f\circ g)(-3),(g\circ f)(x),(f\circ g)(x)$
を求めよ。
【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
$|r| \lt 1$ のとき $\displaystyle\lim_{n \to \infty} n r^n = 0$ である。
このことを利用して$,$ 次の無限級数の和を求めよ。ただし$,$ $|x| < 1$ とする。
$(1)$ $\displaystyle \frac{1}{3}$ $+ \displaystyle \frac{2}{9}$ $+\displaystyle \frac{3}{27}$ $+ \cdots \cdots$ $
+\displaystyle \frac{n}{3^n}$ $ + \cdots \cdots$
$(2)$ $1 + 2x + 3x^2 $$ + \cdots \cdots $$ + n x^{n-1} + \cdots \cdots$
この動画を見る
$|r| \lt 1$ のとき $\displaystyle\lim_{n \to \infty} n r^n = 0$ である。
このことを利用して$,$ 次の無限級数の和を求めよ。ただし$,$ $|x| < 1$ とする。
$(1)$ $\displaystyle \frac{1}{3}$ $+ \displaystyle \frac{2}{9}$ $+\displaystyle \frac{3}{27}$ $+ \cdots \cdots$ $
+\displaystyle \frac{n}{3^n}$ $ + \cdots \cdots$
$(2)$ $1 + 2x + 3x^2 $$ + \cdots \cdots $$ + n x^{n-1} + \cdots \cdots$
【数Ⅲ】【関数】垂線AA1, A1A2 ,A2A3, …を下ろすとき、△CAA1, △CA1A2, △CA2A3,…の面積の総和が△ABCの面積を超えないためには∠Cの大きさはどんな範囲にあればよいか

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のような直角三角形ABCの直角の頂点Aから、
順に、垂線AA1, A1A2 ,A2A3, …を下ろすとき、△CAA1,
△CA1A2, △CA2A3,…の面積の総和が△ABCの面積を
超えないためには、∠Cの大きさはどんな範囲に
あればよいか。
この動画を見る
図のような直角三角形ABCの直角の頂点Aから、
順に、垂線AA1, A1A2 ,A2A3, …を下ろすとき、△CAA1,
△CA1A2, △CA2A3,…の面積の総和が△ABCの面積を
超えないためには、∠Cの大きさはどんな範囲に
あればよいか。
【数Ⅲ】【関数】次の条件によって定められる数列{an}の極限を求めよ。 a1=10, an+1=2√an

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$\{a_n\}$の極限を求めよ。
$a_1=10, a_{n+1}=2\sqrt{a_n}\quad (n=1,2,3,\cdots)$
この動画を見る
次の条件によって定められる数列$\{a_n\}$の極限を求めよ。
$a_1=10, a_{n+1}=2\sqrt{a_n}\quad (n=1,2,3,\cdots)$
【数Ⅲ】【関数】数列{an}に対して、lim(n→∞)(an+5)/(2an+1)=3であるとき、lim(n→∞)anを求めよ。

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列$\{a_n\}$に対して、
$\displaystyle \lim_{n\rightarrow\infty}\dfrac{a_n+5}{2a_n+1}=3$であるとき、$\displaystyle \lim_{n\rightarrow\infty}a_n$を求めよ。
この動画を見る
数列$\{a_n\}$に対して、
$\displaystyle \lim_{n\rightarrow\infty}\dfrac{a_n+5}{2a_n+1}=3$であるとき、$\displaystyle \lim_{n\rightarrow\infty}a_n$を求めよ。
【数Ⅲ】【関数】次の関数のグラフをかけ。(1) y=√(4-x²)(2) y=-2/3 √(9-x² )(3) y=3/2 √(x²+4)

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1) $y=\sqrt{4-x^2}$
(2) $y=-\dfrac23\sqrt{9-x^2}$
(3) $y=\dfrac32\sqrt{x^2+4}$
この動画を見る
次の関数のグラフをかけ。
(1) $y=\sqrt{4-x^2}$
(2) $y=-\dfrac23\sqrt{9-x^2}$
(3) $y=\dfrac32\sqrt{x^2+4}$
【数Ⅲ】【関数】2つの関数 y=√(x+1), y= x+ kのグラフの共有点の個数を調べよ。

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの関数
$y=\sqrt{x+1}$
$y=x+k$
のグラフの共有点の個数を調べよ。
この動画を見る
2つの関数
$y=\sqrt{x+1}$
$y=x+k$
のグラフの共有点の個数を調べよ。
【数Ⅲ】【関数】次の不等式を解け。(1) (x-4)/(x²+x-6) >0 (2) 2/(x-1) - 2/x ≧1

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
(1) $\dfrac{x-4}{x^2+x-6}>0$
(2) $\dfrac2{x-1}-\dfrac2x\geqq1$
この動画を見る
次の不等式を解け。
(1) $\dfrac{x-4}{x^2+x-6}>0$
(2) $\dfrac2{x-1}-\dfrac2x\geqq1$
【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
無限級数
$1- (x+y) $$ + (x+y)^2 - (x+y)^3 $$ + \cdots \cdots + \{ -(x+y) \}^{n-1} $$ + \cdots \cdots$
が収束し、その和が $\displaystyle \frac{1}{1-x}$ であるとき、
$y$ を $x$ で表し、そのグラフをかけ。
この動画を見る
無限級数
$1- (x+y) $$ + (x+y)^2 - (x+y)^3 $$ + \cdots \cdots + \{ -(x+y) \}^{n-1} $$ + \cdots \cdots$
が収束し、その和が $\displaystyle \frac{1}{1-x}$ であるとき、
$y$ を $x$ で表し、そのグラフをかけ。
【数Ⅲ】【関数と極限】次の無限級数の和を求めよ。(1) Σ(1/3)^n・cos nπ(2) Σ(-1/3)^n・sin nπ/2

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよ。
(1)$\displaystyle\sum_{n=1}^{\infty} \left( \dfrac{1}{3} \right)^n \cos n\pi$
(2) $\displaystyle\sum_{n=1}^{\infty} \left( -\dfrac{1}{3} \right)^n \sin \dfrac{n\pi}{2}$
この動画を見る
次の無限級数の和を求めよ。
(1)$\displaystyle\sum_{n=1}^{\infty} \left( \dfrac{1}{3} \right)^n \cos n\pi$
(2) $\displaystyle\sum_{n=1}^{\infty} \left( -\dfrac{1}{3} \right)^n \sin \dfrac{n\pi}{2}$
【数Ⅲ】【関数と極限】無限等比級数で表された関数 f(x)=sinx・cosx + sin³x・cosx + sin⁵x・cosx + …について、y=f(x)のグラフをかけ。

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
無限等比級数で表された関数
$f(x) = \sin x \cos x + \sin^3 x \cos x + \sin^5 x \cos x + \cdots$
について、y=f(x)のグラフをかけ。
この動画を見る
無限等比級数で表された関数
$f(x) = \sin x \cos x + \sin^3 x \cos x + \sin^5 x \cos x + \cdots$
について、y=f(x)のグラフをかけ。
