福田次郎 - 質問解決D.B.(データベース) - Page 21

福田次郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

静岡県の公立高校の数学教員として長年受験指導あり。
藤枝東高校8年、静岡市立高校8年、静岡高校12年。特に静岡高校では9年間にわたり進路指導主任として大学側とも関係を構築。
その経験を活かして数学の動画を日々配信中!
数学関係のアプリも多数手がけています。
過去問を中心に受験対策数学動画多数。

福田の数学〜北里大学2022年医学部第3問〜確率と漸化式の融合問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}1つの箱を置ける台と2つの箱A, Bがある。箱Aには赤玉2個、青玉2個が\hspace{40pt}\\
入っており、箱Bには白玉3個、青玉1個が入っている。台の上に箱Aを置き、\hspace{20pt}\\
次の操作を繰り返す。\hspace{224pt}\\
(操作) 台に置かれている箱から玉を1個取り出して色を調べてから箱に戻し、台\\
に置かれている箱を台から降ろす。取りだした玉が青球であれば箱Bを台\\
に置き、それ以外の色の玉であれば箱Aを台に置く。\hspace{74pt}\\
正の整数nに対し、n回目の操作を終えたときに、台に箱Aが置かれている確率\hspace{17pt}\\
をa_n、箱Bが置かれている確率をb_nとおく。次の問いに答えよ。\hspace{70pt}\\
(1) 正の整数nに対し、b_nとa_{n+1}をそれぞれ a_n を用いて表せ。\hspace{80pt}\\
(2) 正の整数nに対し、a_nをnを用いて表せ。\hspace{143pt}\\
(3) 正の整数nに対し、1回目からn回目までのn回の操作で白玉を1回も取り出\hspace{22pt}\\
さない確率をnを用いて表せ。\hspace{190pt}\\
(4)正の整数nに対し、1回目からn回目までのn回の操作で白玉をちょうど1回\hspace{21pt}\\
だけ取り出す確率をnを用いて表せ。\hspace{165pt}
\end{eqnarray}

2022北里大学医学部過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第2問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 次の各問いに答えよ。\hspace{210pt}\\
(1)定積分\int^1_0\frac{1}{1+x^2}dxを求めよ。\hspace{160pt}\\
(2)x≠0を満たすすべての実数xに対して、e^x \gt 1+xとe^{-x^2} \lt \frac{1}{1+x^2}が\hspace{8pt}\\
成り立つことを証明せよ。\hspace{192pt}\\
(3)\frac{2}{3} \lt \int^1_0e^{-x^2}dx \lt \frac{\pi}{4}が成り立つことを証明せよ。\hspace{88pt}
\end{eqnarray}

2022北里大学医学部過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(4)〜放物線と2法線で囲まれた面積の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
大問1の(4)
放物線 C:y=x²上に、2つの動点P(p,p²), Q (q, q²)がある。点PにおけるCの接線l₁と点 Q における C の接線l₂は垂直であり、 p>0であるとする。
このとき、qはpを用いてq=[ス]と表され、l₁とl₂およびCで囲まれた部分の面積Sはpを用いて S=[セ]と表される。
点PにおけるCの法線と点QにおけるCの法線の交点をRとし、 2つの線分PRとQRおよびCで囲まれた部分の面積をTとおく。 pが正の実数全体を動くとき、Tの最小値は[ソ]である。
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(3)〜不定方程式の解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3) 等式 30x-23y=1を満たす正の整数の組(x, y) のうち、x+y が最小となる
ものは[キ]である。
A={n|n は 600 以下の正の整数であり、30の倍数である}
B={n|n は 600 以下の正の整数であり、 n を 23 で割ると4余る}
とおく。このとき、 AUBに属する正の整数の総和は[ク]である。
また、m を正の整数とし、 ∨m² +120 は整数であるとすると、mのとり得る値は[ヶ],[コ],[サ],[シ]である。

2022北里大学医学部過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(2)〜逆関数と方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 (2) f(x) = log (x/1-x) とする。
関数f(x) の逆関数は f^-1 (x) = [エ]である。
方程式f^-1 (x) - a=0が実数解をもつとき、 定数aのとり得る値の範囲は[オ]である。
方程式 {f^-1(x)}²-bf^-1 (x)-3b=0が実数解をもつとき、 定数 bのとり得る値の範囲は[カ]である。

2022北里大学医学部過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (1)iを虚数単位とし、α= -2+2i,β=3+iとする。
このとき、α⁵の値は[ア]である。
zは等式 2|z-α| = |z-β|を満たす複素数全体を動くとする。
このとき、複素数平面上の点P(z) が描く図形は円であり、その中心を表す複素数は[イ]である。
また、 |z| の最大値は[ウ]である。

2022北里大学医学部過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ tを実数とし、xの3次式f(x) を\hspace{191pt}\\
f(x) = x^3 + (1-2t)x^2+(4-2t)x+4\hspace{131pt}\\
により定める。以下の問いに答えよ。\hspace{165pt}\\
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x) = 0 が虚数の\hspace{8pt}\\
解をもつようなtの範囲を求めよ。\hspace{174pt}\\
\\
実数tが (1) で求めた範囲にあるとき、方程式 f(x) = 0 の異なる2つの虚数解を\hspace{14pt}\\
α, βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。\hspace{19pt}\\
以下、α, β, γを複素数平面上の点とみなす。\hspace{131pt}\\
(2) α, β, γをtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点α\hspace{19pt}\\
が描く図形を複素数平面上に図示せよ。\hspace{152pt}\\
\\
(3) 3点α, β, γが一直線上にあるようなtの値を求めよ。\hspace{100pt}\\
\\
(4)3点α, β, γが正三角形の頂点となるようなtの値を求めよ。\hspace{76pt}\\
\end{eqnarray}

2022中央大学理工学部過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
中央大学2022年理工学部第4問解説です

tを実数とし、 xの3次式f(x) を
ƒ(x) = x³ + (1 − 2t)x² + (4 − 2t)x +4
により定める。以下の問いに答えよ。
(1) 3 次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x)=0 が虚数の
解をもつようなtの範囲を求めよ。
実数t が (1) で求めた範囲にあるとき、 方程式 f(x) = 0 の異なる2つの虚数解を
a,βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。
以下、α, β,γを複素数平面上の点とみなす。
(2) α, β,γをtを用いて表せ。また、実数t が (1) で求めた範囲を動くとき、点α
が描く図形を複素数平面上に図示せよ。
(3) 3点 α, β, γが一直線上にあるようなtの値を求めよ。
(4) 3点 α, β, γが正三角形の頂点となるようなtの値を求めよ。
この動画を見る 

福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 関数 f(x) = -xe^x を考える。曲線C: y = f(x)の点(a, f(a)) における接線をl_aと\\
し、接線l_aとy軸の交点を (0, g(a)) とおく。以下の問いに答えよ。\hspace{60pt}\\
(1) 接線l_aの方程式とg (a)を求めよ。\hspace{170pt}\\
以下、aの関数g (a) が極大値をとるときのaの値をbとおく。\hspace{79pt}\\
(2) bを求め、点(b, f(b)) は曲線Cの変曲点であることを示せ。\hspace{76pt}\\
(3) 曲線Cの点 (b, f(b)) における接線l_bと x軸の交点のx座標cを求めよ。さらに、\hspace{10pt}\\
c\leqq x\leqq 0の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。\hspace{50pt}\\
(4)曲線C、接線l_bおよびy軸で囲まれた部分の面積Sを求めよ。 \hspace{73pt}
\end{eqnarray}

2022中央大学理工学部過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第1問〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 関数f(x)が\hspace{280pt}\\
f(x)=\int_0^{\pi}tf(t)\cos(x+t)dt+\frac{1}{4}\\
を満たしている。このとき、\\
A= \int_0^{\pi}tf(t)\cos tdt,\ \ \ B=\int_0^{\pi}tf(t)\sin tdt\ \ \ \ ... ①\\
とおいてf(x)をAとBで表すと、\\
f(x)=A×(\ \ \ \boxed{\ \ ア\ \ }\ \ \ )+B×(\ \ \ \boxed{\ \ イ\ \ }\ \ \ )+\frac{1}{4}\ \ \ \ ... ②\\
となる。ここで、\\
\\
\\
\int_0^{\pi}t\cos tdt=-2,\ \ \ \int_0^{\pi}t\cos^2 tdt=\boxed{\ \ ウ\ \ },\ \ \ \int_0^{\pi}t\sin tdt=\pi,\ \ \ \\
\int_0^{\pi}t\sin^2 tdt=\boxed{\ \ エ\ \ },\ \ \ \int_0^{\pi}t\cos t\sin tdt=\boxed{\ \ オ\ \ } \\
\\
\\
を用い、①に②を代入して整理すると、AとBの満たす連立方程式\\
\\
\left\{
\begin{array}{1}
(\ \ \ \boxed{\ \ カ\ \ }\ \ \ )A-\pi B+2=0\\
\pi A +(\ \ \ \boxed{\ \ キ\ \ }\ \ \ )B-\pi = 0\\
\end{array}
\right.\\
\\
が得られる。この連立方程式を解くと\\
A=\frac{\boxed{\ \ ク\ \ }}{\pi^4-\pi^2-16},\ \ \ B=\frac{\pi (\ \ \ \boxed{\ \ ケ\ \ }\ \ \ )}{\pi^4-\pi^2-16}\\
が得られ、したがって\\
f(x)= \frac{\boxed{\ \ ク\ \ }}{\pi^4-\pi^2-16}×(\ \ \ \boxed{\ \ ア\ \ }\ \ \ )+\frac{\pi (\ \ \ \boxed{\ \ ケ\ \ }\ \ \ )}{\pi^4-\pi^2-16}×(\ \ \ \boxed{\ \ イ\ \ }\ \ \ )+\frac{1}{4}\\
となる。
\\
\\
\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }の解答群\\
ⓐ\sin x\ \ \ ⓑ-\sin x\ \ \ ⓒ\cos x\ \ \ ⓓ-\cos x\ \ \
ⓔ\tan x\ \ \ ⓕ-\tan x\ \ \ \\
\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }の解答群\\
ⓐ\pi \ \ \ ⓑ\frac{\pi}{2}\ \ \ ⓒ\frac{\pi}{4}\ \ \ ⓓ\frac{\pi}{8}\ \ \ ⓔ-\pi \ \ \ \\
ⓕ-\frac{\pi}{2}\ \ \ ⓖ-\frac{\pi}{4}\ \ \ ⓗ-\frac{\pi}{8}\ \ \ ⓘ\pi^2 \ \ \ ⓙ\frac{\pi^2}{2}\ \ \ \\
ⓚ\frac{\pi^2}{4}\ \ \ ⓛ\frac{\pi^2}{8}\ \ \ ⓜ-\pi^2 \ \ \ ⓝ-\frac{\pi^2}{2}\ \ \ ⓞ-\frac{\pi^2}{4}\ \ \ \\
ⓟ-\frac{\pi^2}{8}\ \ \ ⓠ\frac{\pi^2+4}{16}\ \ \ ⓡ\frac{\pi^2-4}{16}\ \ \ ⓢ\frac{-\pi^2+4}{16}\ \ \ ⓣ-\frac{\pi^2+4}{16}\ \ \ \\
\\
\\
\boxed{\ \ カ\ \ },\boxed{\ \ キ\ \ },\boxed{\ \ ク\ \ },\boxed{\ \ ケ\ \ }の解答群\\
ⓐ\pi^2+2\ \ \ ⓑ\pi^2-2\ \ \ ⓒ-\pi^2+2\ \ \ ⓓ-\pi^2-2\ \ \ \\
ⓔ\pi^2+4\ \ \ ⓕ\pi^2-4\ \ \ ⓖ-\pi^2+4\ \ \ ⓗ-\pi^2-4\ \ \ \\
ⓘ\pi^2+6\ \ \ ⓙ\pi^2-6\ \ \ ⓚ-\pi^2+6\ \ \ ⓛ-\pi^2-6\ \ \ \\
ⓜ\pi^2+8\ \ \ ⓝ\pi^2-8\ \ \ ⓞ-\pi^2+8\ \ \ ⓟ-\pi^2-8\ \ \ \\
\end{eqnarray}

2022中央大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第4問〜線分の中点の軌跡と直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 座標平面上に円C:x^2+y^2=4と点P(6,\ 0)がある。円C上を点A(2a,\ 2b)が\\
動くとき、線分APの中点をMとし、線分APの垂直二等分線をlとする。\hspace{20pt}\\
(1)点Mの軌跡の方程式を求め、その軌跡を図示せよ。\hspace{90pt}\\
(2)直線lの方程式をa,\ bを用いて表せ。\hspace{147pt}\\
(3)直線lが通過する領域を表す不等式を求め、その領域を図示せよ。\hspace{41pt}\\
\end{eqnarray}

2022上智大理工学部過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 複素数からなる数列{z_n}を、次の条件で定める。\hspace{150pt}\\
z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)\\
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。\\
(1)z_2=\boxed{\ \ ツ \ \ }+\boxed{\ \ ツ \ \ }\ i, \ \ \ z_3=\boxed{\ \ ト \ \ }+\boxed{\ \ ナ \ \ }\ i,\ \ \ z_4=\boxed{\ \ 二 \ \ }+\boxed{\ \ ヌ \ \ }\ i \ \ である。\\
(2)r \gt 0,\ 0 \leqq θ \lt 2\pi を用いて、1+i=r(\cos θ+i\sin θ)のように1+iを極形式で\\
表すとき、r=\sqrt{\boxed{\ \ ネ \ \ }},\ θ=\frac{\boxed{\ \ ノ \ \ }}{\boxed{\ \ ハ \ \ }}\piである。\\
(3)すべての正の整数nに対する\triangle PA_nA_{n+1}が互いに相似になる点Pに対応する\\
複素数は、\boxed{\ \ ヒ\ \ }+\boxed{\ \ フ \ \ }\ iである。\\
(4)|z_n| \gt 1000となる最小のnはn=\boxed{\ \ へ \ \ }である。\\
(5)A_{2022+k}が実軸上にある最小の正の整数kはk=\boxed{\ \ ホ \ \ }である。
\end{eqnarray}

2022上智大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第2問〜三角比と通過領域の体積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ tを実数とする。次の条件(★)を満たす\triangle ABCを考える。\hspace{100pt}\\
(★)AC=t,\ BC=1を満たし、\angle BACの2等分線と辺BCの交点をDとおくと、\\
\cos\angle DAC=\frac{\sqrt3}{3}である。\hspace{197pt}\\
(1)\cos\angle DAC=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}である。\\
\\
(2)tの取りうる範囲をt_1\lt t \lt t_2とするとき、t_1=\boxed{\ \ あ\ \ },t_2=\boxed{\ \ い\ \ }である。\\
\\
\boxed{\ \ あ\ \ },\ \boxed{\ \ い\ \ }の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{3}\ \ \ (\textrm{c})\frac{1}{2}\ \ \ (\textrm{d})\frac{\sqrt3}{3}\ \ \ (\textrm{e})\frac{2}{3}\ \ \ (\textrm{f})1\ \ \ (\textrm{g})\frac{2\sqrt3}{2}\ \ \ (\textrm{h})\sqrt3\ \ \ (\textrm{i})2\ \ \ (\textrm{j})3\ \ \ \\
\\
(3)辺ABの長さをtの式で表すとAB=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}t+\sqrt{1+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}t^2}\ \ \ である。\\
\\
(4)\triangle ABCの面積は\ t=\frac{\sqrt{\boxed{\ \ シ\ \ }}}{\boxed{\ \ ス\ \ }}で最大値\frac{\sqrt{\boxed{\ \ セ\ \ }}}{\boxed{\ \ ソ\ \ }}をとる。\\
\\
(5)t_1,t_2を(2)で定めた値とする。\\
t_1 \lt t \lt t_2の範囲で、xyz-座標空間内の平面z=t上に、条件(★)を満たす\\
\triangle ABCが、B(0,0,t),C(0,1,t)を満たし、Aのx座標が正であるように\\
おかれている。まgた、B_1(0,0,t_1),C_1(0,1,t_1),B_2(0,0,t_2),C_2(0,1,t_2)と\\
おく。\\
\triangle ABCをt_1 \lt t \lt t_2の範囲で動かしたときに通過してできる図形に線分B_1C_1、\\
線分B_2C_2を付け加えた立体の体積は\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}\ \ である。
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(3)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)\int_0^{\frac{2}{3}\pi}x\sin2xdx=\frac{\pi}{\boxed{\ \ イ\ \ }}+\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\sqrt{\boxed{\ \ オ\ \ }}\ である。
\end{eqnarray}

2022上智大理工学部過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第2問〜三角関数と2直線のなす角

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ AB = 1, \angle ABC = 90°,\angle BCA = 7.5°である△ABC の辺BC 上に AD = CD と\\
なるように点Dをとる。このとき、BD = \boxed{\ \ コ\ \ }, CD=\boxed{\ \ サ\ \ }である。したがって、\\
\tan 7.5° =\frac{1}{\boxed{\ \ コ\ \ }+\boxed{\ \ サ\ \ }}\hspace{150pt}\\
次に、正の実数kに対して、2直線y=3kx, y = 4kxのなす角度をθとする。た\hspace{30pt}\\
だし、0° \lt θ \lt 90°である。このとき、\tanθ = \boxed{\ \ シ\ \ }である。したがって、\tanθ は\\
k =\frac{1}{\boxed{\ \ ス\ \ }} のとき最大値\frac{1}{\boxed{\ \ セ\ \ }} をとる。また、k=\frac{1}{\boxed{\ \ ス\ \ }} のとき\boxed{\ \ ソ\ \ }を満たす。\hspace{9pt}\\
なお、必要ならば \hspace{260pt}\\
\sqrt2 = 1.4, \sqrt3=1.7..., \sqrt5=2.2, \sqrt6=2.4...\hspace{120pt} \\
を用いてよい。\hspace{270pt}\\
\\
\\
\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }の解答群\\
ⓐ\sqrt2+\sqrt3\ \ \ ⓑ\sqrt2+\sqrt5\ \ \ ⓒ\sqrt2+\sqrt6\ \ \ ⓓ2+\sqrt3\ \ \ \\ ⓔ2+\sqrt5\ \ \ ⓕ2+\sqrt6\ \ \ ⓖ\sqrt3+\sqrt5\ \ \ ⓗ\sqrt5+\sqrt6\ \ \ \\
\\
\\
\boxed{\ \ シ\ \ }の解答群\\
ⓐ\frac{k}{1-12k^2}\ \ \ ⓑ\frac{k}{1+12k^2}\ \ \ ⓒ\frac{7k}{1-12k^2}\ \ \ ⓓ\frac{7k}{1+12k^2}\ \ \ \\
ⓔ\frac{12k^2}{1-12k^2}\ \ \ ⓕ\frac{12k^2}{1+12k^2}\ \ \ ⓖ\frac{12k^2}{1-7k^2}\ \ \ ⓗ\frac{12k^2}{1+7k^2}\ \ \ \\
\\
\\
\boxed{\ \ ス\ \ },\boxed{\ \ セ\ \ }の解答群\\
ⓐ2\ \ \ ⓑ2\sqrt2\ \ \ ⓒ3\ \ \ ⓓ2\sqrt3\ \ \ ⓔ4\ \ \ ⓕ3\sqrt2\ \ \ \\
ⓖ3\sqrt3 \ \ \ ⓗ4\sqrt2 \ \ \ ⓘ6\ \ \ ⓙ4\sqrt3 \ \ \ ⓚ7\ \ \ ⓛ7\sqrt2 \ \ \ \\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
ⓐθ \gt 7.5°\ \ \ ⓑθ = 7.5°\ \ \ ⓒθ \lt 7.5°\ \ \
\end{eqnarray}

2022中央大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(2)〜多項定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (2)(1+x+x^2)^{10}\ のx^{16}\ の係数は\boxed{\ \ ア\ \ }\ である。
\end{eqnarray}

2022上智大学理工部過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(1)〜集合と論理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (1)x,yを実数とする。次の条件を考える。\hspace{130pt}\\
p:xyが無理数である\\
q:x,yがともに無理数である\\
r:x,yの少なくとも一方が無理数である\\
(\textrm{i})以下から真の命題をすべて選べ。\\
(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,yが命題「p \Rightarrow q」の判例であるための必要十分条件を、すべて選べ。\\
(\textrm{a})「xyが無理数」かつ「x,yが共に有理数」である\\
(\textrm{b})「xyが有理数」かつ「x,yが共に有理数」である\\
(\textrm{c})「xyが有理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{d})「xyが無理数」かつ「xが有理数、または、yが有理数」である\\
(\textrm{e})「xyが無理数、かつxが有理数」または「xyが無理数、かつ、yが有\\
理数」である\\
(\textrm{f})「xyが無理数、かつxが有理数」または「xyが有理数、かつ、yが有\\
理数」である\\
\end{eqnarray}

2022上智大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第4問〜媒介変数で表された極方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え\hspace{10pt}\\
る。平面上を運動する点Pの極座標(r,\ θ)が、時刻t \geqq 0の関数として、\hspace{39pt}\\
r=1+t,\ \ \ θ=\log(1+t)\hspace{100pt}\\
で与えられるとする。時刻t=0にPが出発してから初めてy軸上に到着するまで\\
にPが描く軌跡をCとする。\hspace{191pt}\\
(1)\ t \gt 0において、Pが初めてy軸上に到着するときのtの値を求めよ。\hspace{30pt}\\
(2)C上の点のx座標の最大値を求めよ。\hspace{147pt}\\
(3)Cの長さを求めよ。\hspace{210pt}\\
(4)Cを座標平面上に図示せよ。\hspace{177pt}\\
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。\hspace{109pt}\\
\end{eqnarray}

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第3問〜最後の目が得点になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#確率分布と統計的な推測#確率分布#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 各頂点に1から4までの数が1つずつ書いてあり、振るとそれらの1つが等し\\
い確率で得られる正四面体の形のさいころTがある。これを用いて、2人のプレイ\\
ヤA, B が以下のようなゲームをする。それぞれの枠内に記したルールに従い、各\\
プレイヤがTを1回以上振って、最後に出た数をそのプレイヤの得点とし、得点の\\
多い方を勝ちとする。ここで、同点のときには常にBの勝ちとする。また、振り直\\
すかどうかは、各プレイヤーとも自分が勝つ確率を最大にするように選択するとす\\
る。このとき、Aが勝つ確率pについて答えよ。ただし、以下のそれぞれの場合に\\
ついて、pは0以上の整数k, nを用いてp =\frac{2k+1}{2^n}と表せるので、このk, nを\\
答えよ。\\
(1) A, B がそれぞれ1回ずつTを振る\\
このときpを表すk, nは、k=\boxed{\ \ ケ\ \ } ,\ n=\boxed{\ \ コ\ \ }である。\\
\\
(2)先にAが一回振る。次にBが2回まで振ってよい(Aの得点を知っている状\\
況で、1回振り直してよい)\\
このときpを表すk,nは、k=\boxed{\ \ サ\ \ } ,\ n=\boxed{\ \ シ\ \ }である。\\
\\
(3)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直\\
してよい)。次にBが1回振る。\\
このときpを表すk,nは、k=\boxed{\ \ ス\ \ } ,\ n=\boxed{\ \ セ\ \ }である。\\
\\
(4)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直\\
してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、1回\\
振り直してよい)\\
このときpを表すk,nは、k=\boxed{\ \ ソ\ \ } ,\ n=\boxed{\ \ タ\ \ }である。\\
\\
(5)先にAが3回まで振ってよい(Bの得点がまだわからない状況で、2回まで振\\
り直してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、\\
1回振り直してよい)\\
このときpを表すk,nは、k=\boxed{\ \ チ\ \ } ,\ n=\boxed{\ \ ツ\ \ }である。\\
\\

\end{eqnarray}

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第2問〜空間ベクトルと軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 一辺の長さが1である立方体QACB-CFGEを考える。\hspace{130pt}\\
\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } = \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },\ とおき、実数s,tに対し\\
点P,Qを\\
\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }\\
を満たす点とする。\\
(1)点Pは直線\boxed{\ \ あ\ \ }上にあり、点Qは直線\boxed{\ \ い\ \ }上にある。\\
(2)直線\boxed{\ \ あ\ \ }と直線\boxed{\ \ い\ \ }とは\boxed{\ \ う\ \ }\\
\\
\boxed{\ \ う\ \ }の選択肢\\
(\textrm{a})一致する \ \ \ (\textrm{b})平行である \ \ \ (\textrm{c})直交する \ \ \ (\textrm{d})交わるが直交しない \ \ \ \\
(\textrm{e})ねじれの位置にあって垂直である \ \ \ (\textrm{f})ねじれの位置にあって垂直でない \ \ \ \\
\\
(3)線分PQの長さは、s=\boxed{\ \ え\ \ },\ t=\boxed{\ \ お\ \ }\ のとき最小値をとり、\\
このときPQ^2=\boxed{\ \ か\ \ }\ である\\
\\
\boxed{\ \ え\ \ }\ \boxed{\ \ お\ \ }\ \boxed{\ \ か\ \ }\ の選択肢\\
(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}\ \ \ (\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1\ \ \ (\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3\ \ \ \\
\\
(4)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQの中点Mの動く領域は\\
\boxed{\ \ き\ \ }\ であり、その面積は\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\ である。\\
\\
\boxed{\ \ き\ \ }の選択肢\\
(\textrm{a})正三角形\ \ \ (\textrm{b})直角二等辺三角形\ \ \ (\textrm{c})直角二等辺三角形でない直角三角形\ \ \ \\
(\textrm{d})直角二等辺三角形でない直角三角形でもない三角形\ \ \ (\textrm{e})正方形\ \ \ (\textrm{f})正方形でない長方形\ \ \ \\
(\textrm{g})長方形でない平行四辺形\ \ \ (\textrm{h})並行四辺形でない四角形\ \ \ (\textrm{i})五角形\ \ \ (\textrm{i})六角形\ \ \ \\
\\
(5)s,tが0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1\ の範囲を動くとき、線分PQが通過する領域の体積は\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\ である。
\end{eqnarray}

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第1問(3)〜命題と必要十分な条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
(3) aを正の実数とする。 実数からなる集合X, Yを次で定める。
X={x|0 < x < a}, Y={y|3 < y < 5}
次のそれぞれの命題が成り立つための必要十分条件を、選択肢から1つずつ選べ。
(i) すべてのx∈Xとすべてのy∈Yに対してx<yとなる
(ii) 「すべてのx∈Xに対してx<y」となるy∈Yが存在する
(iii) すべてのx∈Xに対して「x<yとなるy∈Yが存在する」

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第1問(2)〜平均と分散の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1(2)あるクラスの生徒は12人で、A,B,Cの3つのグループに分かれている。
Aグループは3人、Bグループは4人、Cグループは5人の生徒からなる。
このクラスでテストを行った。各人の点数は0以上10以下の整数である。
(i) A グループの生徒3人の点数の分散は6であり、そのうち2人の点数はそれぞれ2と5である。
このとき、 残りの1人の点数は[イ]である。
(ii)さらに、Bグループの生徒4人の点数の平均値は2であり、分散は3である。
Cグループの生徒5人の点数の平均値は5であり、分散は6である。
このとき、クラスの生徒12人の点数の平均値は[ウ]であり、分散は[エ]である。

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第1問(1)〜1次の近似式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#学校別大学入試過去問解説(数学)#速度と近似式#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 (1) cos 61°の近似値を求めたい。y=cos x の1次の近似式を用いて計算し、
小数第3位を四捨五入すると cos 61° ≒ 0. [ア] を得る。
ただし、 π= 3.14 √3=1.73 として用いてよい。

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第4問(3)〜指数不等式と領域における最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (3)\ 正の数の組(x,\ y)が\hspace{180pt}\\
\left\{
\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}
\right.\hspace{180pt}\\
を満たすときz=xyは(x,\ y)=(a,\ b)で最小値をとる。ここで、\\
\log_{10}a=\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }},\ \log_{10}b=\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ワ\ \ }}\hspace{90pt}\\
である。 \hspace{220pt}
\end{eqnarray}

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第4問(2)〜円が直線から切り取る線分の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (2)\ t \gt 0とし、xy平面上の直線\hspace{190pt}\\
l:y=-x+t\hspace{210pt}\\
と領域\hspace{270pt}\\
B:x^2+(y-2)^2 \leqq \frac{1}{4}t^2\hspace{160pt}\\
を考える。Bとlが2点以上で交わるとき、交わりとして得られる線分の長さは\\
t=\boxed{\ \ ム\ \ }のときに最大値\boxed{\ \ メ\ \ }\sqrt{\boxed{\ \ モ\ \ }}をとる。\hspace{100pt}
\end{eqnarray}

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第4問(1)〜必要十分条件と条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (1)\ 実数の数列{a_n}に関する以下の条件 (P) を考える。\hspace{120pt}\\
(P) 「n\geqq Nならば a_n \leqq 4」が成り立つ自然数Nが存在する\hspace{70pt}\\
(\textrm{i}) 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。\hspace{50pt}\\
(\textrm{ii}) 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの\\
をすべて選べ。\hspace{240pt}\\
(\textrm{iii}) 以下の選択肢から、(P) の否定であるものをすべて選べ。\hspace{80pt}\\
選択肢(\textrm{a})「n\gt N ならばa_n \leqq 4」が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{b}) 「n \lt N ならばan \leqq 4」 が成り立つ自然数Nが存在する\hspace{57pt}\\
(\textrm{c}) 「n\geqq Nならばa_n\gt 4」 が成り立つ自然数Nが存在する\hspace{60pt}\\
(\textrm{d}) a_n \gt 4 を満たす自然数n が無限個存在する\hspace{115pt}\\
(\textrm{e}) a_n \leqq 4 を満たす自然数nが無限個存在する\hspace{116pt}\\
(\textrm{f}) a_n \gt 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
(\textrm{g}) a_n \leqq 4 を満たす自然数nは存在しても有限個である\hspace{85pt}\\
\end{eqnarray}

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第3問〜3次方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ aを実数の定数として3次関数\hspace{150pt}\\
f(x)=9x^3-9x+a\hspace{150pt}\\
を考える。\hspace{220pt}\\
(1) y=f(x)のグラフとx軸の共有点が2つ以上あるようなaの範囲は\hspace{11pt}\\\
\boxed{\ \ ネ\ \ }\sqrt{\boxed{\ \ ノ\ \ }}\leqq a \leqq \boxed{\ \ ハ\ \ }\sqrt{\boxed{\ \ ヒ\ \ }}\ である。\\
(2)a= \boxed{\ \ ハ\ \ }\sqrt{\boxed{\ \ ヒ\ \ }}\ のとき、方程式f(x)= 0の最も小さい解は\hspace{15pt}\\\
\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\sqrt{\boxed{\ \ ヒ\ \ }}\hspace{150pt}\\\
であり、y=f(x)のグラフとx軸の囲む図形の面積は\frac{\boxed{\ \ マ\ \ }}{\boxed{\ \ ミ\ \ }}\ である。\\

\end{eqnarray}

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第2問〜空間の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 空間内に立方体ABCD-EFGHがある。辺ABを2:1に内分\\
する点をP、線分CPの中点をQとする。\hspace{91pt}\\
(1)\overrightarrow{ AQ }=\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\overrightarrow{ AB }+\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}\overrightarrow{ AD }である。\hspace{61pt}\\
(2)線分AG上の点Rを\overrightarrow{ QR }∟\overrightarrow{ AG }となるようにとると\hspace{29pt}\\
\overrightarrow{ AR }=\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\overrightarrow{ AG }である。\\
(3)直線QRが平面EFGHと交わる点をSとすると\hspace{42pt}\\
\overrightarrow{ AS }=\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\overrightarrow{ AB }+\frac{\boxed{\ \ ナ\ \ }}{\boxed{\ \ 二\ \ }}\overrightarrow{ AD }+\boxed{\ \ ヌ\ \ }\ \overrightarrow{ AE }である。
\end{eqnarray}

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(3)〜サイコロの目による円と直線の位置関係の確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{116pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{60pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{176pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{49pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{45pt}\\
\\
(3)円(x-3)^2+(y-3)^2=5とlが共有点を持たない確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}である。\hspace{6pt}
\end{eqnarray}

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(2)〜領域に属する確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{100pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{48pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{160pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{34pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{31pt}\\
\\
(2)点(2,\ 4)がDに含まれる確率は\hspace{150pt}\\
\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\hspace{230pt}\\
点(2,\ 3)がDに含まれる確率は\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}である。\hspace{90pt}
\end{eqnarray}

2022上智大学文系過去問
この動画を見る 
PAGE TOP