数学・算数の楽しさを思い出した / Ken
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
三角関数の重要ポイントが詰まった問題【数学 入試問題】【奈良県立医大】
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$0<\theta<\pi,\theta \neq \dfrac{\pi}{2}$のとき、
$ tan\theta-\dfrac{1}{tan\theta}=\dfrac{1}{sin\theta}-\dfrac{1}{cos\theta}$を満たす$\theta$の値を求めよ。
奈良県立医大過去問
この動画を見る
$0<\theta<\pi,\theta \neq \dfrac{\pi}{2}$のとき、
$ tan\theta-\dfrac{1}{tan\theta}=\dfrac{1}{sin\theta}-\dfrac{1}{cos\theta}$を満たす$\theta$の値を求めよ。
奈良県立医大過去問
東大の整数問題【数学 入試問題】【東京大学】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$3$以上$9999$以下の奇数$a$で、$a^2-a$が$10000$で割り切れるものをすべて求めよ。
東大過去問
この動画を見る
$3$以上$9999$以下の奇数$a$で、$a^2-a$が$10000$で割り切れるものをすべて求めよ。
東大過去問
【頻出】整数の証明問題【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とするとき、$n^2$は$3$の倍数か、または$3$で割った余りが$1$であることを証明せよ。
(2)自然数$a,b,c$が$a^2+b^2=c^2$を満たすとき、$a,b$のうち少なくとも$1$つは$3$の倍数出あることを証明せよ。
数学入試問題過去問
この動画を見る
(1)$n$を自然数とするとき、$n^2$は$3$の倍数か、または$3$で割った余りが$1$であることを証明せよ。
(2)自然数$a,b,c$が$a^2+b^2=c^2$を満たすとき、$a,b$のうち少なくとも$1$つは$3$の倍数出あることを証明せよ。
数学入試問題過去問
満点必須!対数の証明問題【数学 入試問題】【学習院大学】
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\log_{10}2+\log_{10}3$は無理数であることを証明せよ。
学習院大過去問
この動画を見る
$\log_{10}2+\log_{10}3$は無理数であることを証明せよ。
学習院大過去問
素数を扱え!整数問題【数学 入試問題】【千葉大学】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$p$は奇数である素数とし、$N=(p+1)(p+3)(p+5)$とおく。
(1)$N$は$48$の倍数であることを示せ。
(2)$N$は$144$の倍数になるような$p$の値を小さい順に$3$つ求めよ。
千葉大過去問
この動画を見る
$p$は奇数である素数とし、$N=(p+1)(p+3)(p+5)$とおく。
(1)$N$は$48$の倍数であることを示せ。
(2)$N$は$144$の倍数になるような$p$の値を小さい順に$3$つ求めよ。
千葉大過去問
京大の整数問題【数学 入試問題】【京都大学】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
方程式$x^2+2y^2+2z^2-2xy-2xz+2yz-5=0$を満たす正の整数の組$(x,y,z)$をすべて求めよ。
京都大過去問
この動画を見る
方程式$x^2+2y^2+2z^2-2xy-2xz+2yz-5=0$を満たす正の整数の組$(x,y,z)$をすべて求めよ。
京都大過去問
範囲を絞れ!整数問題の入試問題【東京女子大学】【数学】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$a,b,c$が整数で、$1≦a≦b≦c$かつ$abc=a+b+c$のとき、$ab≦3$であることを示せ。
(2)$1≦a≦b≦c$かつ$abc=a+b+c$を満たす整数$a,b,c$をすべて求めよ。
東京女子大過去問
この動画を見る
(1)$a,b,c$が整数で、$1≦a≦b≦c$かつ$abc=a+b+c$のとき、$ab≦3$であることを示せ。
(2)$1≦a≦b≦c$かつ$abc=a+b+c$を満たす整数$a,b,c$をすべて求めよ。
東京女子大過去問
【正答率1%】3つの方法で桁数を求めます【一橋大学 入試問題 数学】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$(2\times3\times5\times7\times11\times13)^{10}$の桁数は?
一橋大過去問
この動画を見る
$(2\times3\times5\times7\times11\times13)^{10}$の桁数は?
一橋大過去問
範囲を考えろ!整数問題の入試問題【慶応義塾大学】【数学】
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ x^2+y^2<9,x^2\leqq y^2$を満たす整数の組$(x,y)$は全部で$\Box$個ある。
慶應義塾大過去問
この動画を見る
$ x^2+y^2<9,x^2\leqq y^2$を満たす整数の組$(x,y)$は全部で$\Box$個ある。
慶應義塾大過去問
整式の割り算!頻出です【山梨大学 入試問題】【数学】
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$x^{2014}$を整式$x^4+x^3+x^2+x+1$で割った余りを求めよ。
山梨大過去問
この動画を見る
整式$x^{2014}$を整式$x^4+x^3+x^2+x+1$で割った余りを求めよ。
山梨大過去問
ゴリゴリ計算【自治医科大学】【数学】
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$x^5+3x^4+px^3+qx-2$が$x^2+3x+4$で割り切れるとき、$p-q$の値を求めよ。
自治医科大過去問
この動画を見る
整式$x^5+3x^4+px^3+qx-2$が$x^2+3x+4$で割り切れるとき、$p-q$の値を求めよ。
自治医科大過去問
【上手に文字を置ける?】多項式の割り算の入試問題【流通科学大学】【数学】
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$f(x)=x^3+ax^2+bx+c$を$(x+1)^2$で割ると余りが$2x+7$であり、
$x-1$で割ると余りが$17$である。
このときの、$a,b,c$の値は?
流通科学大過去問
この動画を見る
整式$f(x)=x^3+ax^2+bx+c$を$(x+1)^2$で割ると余りが$2x+7$であり、
$x-1$で割ると余りが$17$である。
このときの、$a,b,c$の値は?
流通科学大過去問
いきなり代入しませんよね?【数学 入試問題】【前橋国際大学】
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x=\dfrac{-1+\sqrt5}{2}$のとき、$x^3+x^2+x+1$の値を求めよ。
前橋国際大過去問
この動画を見る
$x=\dfrac{-1+\sqrt5}{2}$のとき、$x^3+x^2+x+1$の値を求めよ。
前橋国際大過去問
【比例式】いきなり文字で置くな!【数学 入試問題】【福島大学】
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の実数$x,y,z$が$\dfrac{yz}{x}=\dfrac{zx}{4y}=\dfrac{xy}{9z}$を満たすとき、$\dfrac{x+y+Z}{\sqrt{x^2+y^2+z^2}}$の値は?
福島大過去問
この動画を見る
正の実数$x,y,z$が$\dfrac{yz}{x}=\dfrac{zx}{4y}=\dfrac{xy}{9z}$を満たすとき、$\dfrac{x+y+Z}{\sqrt{x^2+y^2+z^2}}$の値は?
福島大過去問
【因数定理】コツがあるんです【数学 解説動画】
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の式を因数分解せよ。
(1)$x^3+4x^2-6x-27$
(2)$x^3+6x^2-6x+7$
この動画を見る
次の式を因数分解せよ。
(1)$x^3+4x^2-6x-27$
(2)$x^3+6x^2-6x+7$
cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。
(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。
(3)$cos1°$が無理数であることを証明せよ。
数学入試問題過去問
この動画を見る
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。
(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。
(3)$cos1°$が無理数であることを証明せよ。
数学入試問題過去問
【有名問題】京都大学の伝説の問題です【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ tan1°$は有理数か?
数学入試問題過去問
この動画を見る
$ tan1°$は有理数か?
数学入試問題過去問
【良問】数IIの知識で解けます【山形大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#点と直線#円と方程式#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。
山形大過去問
この動画を見る
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。
山形大過去問
格子点を通るということは?【山口大学】【数学 入試問題】
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
座標平面上で、$x$座標,$y$座標が共に整数である点を格子点という。
原点を通る2直線$l,m$がそれぞれ原点以外にも格子点を通るとき、
$l,m$のなす角は、$60°$にならないことを証明せよ。
ただし、$\sqrt3$が無理数であることを証明なしに用いても良い。
山口大過去問
この動画を見る
座標平面上で、$x$座標,$y$座標が共に整数である点を格子点という。
原点を通る2直線$l,m$がそれぞれ原点以外にも格子点を通るとき、
$l,m$のなす角は、$60°$にならないことを証明せよ。
ただし、$\sqrt3$が無理数であることを証明なしに用いても良い。
山口大過去問
整数問題【一橋大学】【数学 入試問題】
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$は0でない実数とする。$x-\dfrac{1}{x}$が0以外の整数ならば$x^2-\dfrac{1}{x^2}$は整数でないことを示せ。
一橋大過去問
この動画を見る
$x$は0でない実数とする。$x-\dfrac{1}{x}$が0以外の整数ならば$x^2-\dfrac{1}{x^2}$は整数でないことを示せ。
一橋大過去問
円周率の証明問題【2010年大分大学】
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
円周率$\pi$に関して次の不等式が成立することを証明せよ。
ただし、数値$\pi=3.141592・・・$を使用して直接比較する解答は0点とする。
$3\sqrt6-3\sqrt2<\pi<24-12\sqrt3$
2010大分大過去問
この動画を見る
円周率$\pi$に関して次の不等式が成立することを証明せよ。
ただし、数値$\pi=3.141592・・・$を使用して直接比較する解答は0点とする。
$3\sqrt6-3\sqrt2<\pi<24-12\sqrt3$
2010大分大過去問
二項定理を使ってあることに気付ける?【2017年一橋大学】
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ P(0)=1,P(x+1)-P(x)=2x$を満たす整式$P(x)$を求めよ。
2017一橋大過去問
この動画を見る
$ P(0)=1,P(x+1)-P(x)=2x$を満たす整式$P(x)$を求めよ。
2017一橋大過去問
一文字削除からの判別式【2014年早稲田大学】
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$a,b,c$が
$a+b+c=8,a^2+b^2+c^2=32$
を満たす時、実数$c$の最大値を求めよ。
2014早稲田大過去問
この動画を見る
実数$a,b,c$が
$a+b+c=8,a^2+b^2+c^2=32$
を満たす時、実数$c$の最大値を求めよ。
2014早稲田大過去問
対称式の良問【2008年早稲田大学】
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$x$が$x^3+\dfrac{1}{x^3}=52$を満たすとき、$x^4+\dfrac{1}{x^4}$の値を求めよ。
2008早稲田大過去問
この動画を見る
実数$x$が$x^3+\dfrac{1}{x^3}=52$を満たすとき、$x^4+\dfrac{1}{x^4}$の値を求めよ。
2008早稲田大過去問
【次数が高くても焦るな】対称式 入試問題【2017年昭和大学】
単元:
#数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a+b=1,a^2+b^2=3$のとき、$a^7+b^7$の値を求めよ。
2017昭和大過去問
この動画を見る
$a+b=1,a^2+b^2=3$のとき、$a^7+b^7$の値を求めよ。
2017昭和大過去問
【解けますよね?】対称式 入試問題【2013年横浜市大/改題】
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b,c$を実数として、$A,B,C$を
$A=a+b+c$
$B=a^2+b^2+c^2$
$C=a^3+b^3+c^3$
とおく。この時$abc$を$A,B,C$を用いて表せ。
2013横浜市大改題過去問
この動画を見る
$a,b,c$を実数として、$A,B,C$を
$A=a+b+c$
$B=a^2+b^2+c^2$
$C=a^3+b^3+c^3$
とおく。この時$abc$を$A,B,C$を用いて表せ。
2013横浜市大改題過去問
【#11】【因数分解100問】基礎から応用まで!(96)〜(100)【解説付き】
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(96)$(x+y+z)(x+y-z)(x-y+z)(x-y-z)$
(97)$(a+b)(b+c)(c-a)(a-b+c)$
(98)$(c+ab)(d-ac+ab)$
(99)$3(c+d)(a+b+c)(a+b+d)$
(100)$(3a^2+b^2)(a^2+3b^2)$
この動画を見る
(96)$(x+y+z)(x+y-z)(x-y+z)(x-y-z)$
(97)$(a+b)(b+c)(c-a)(a-b+c)$
(98)$(c+ab)(d-ac+ab)$
(99)$3(c+d)(a+b+c)(a+b+d)$
(100)$(3a^2+b^2)(a^2+3b^2)$
【#10】【因数分解100問】基礎から応用まで!(91)〜(95)【解説付き】
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(91)$(3x-8)(16x+9)$
(92)$(25x-16)(4x+5)$
(93)$3(a+b)(b+c)(c+a)$
(94)$24xyz$
(95)$(x+y+2)(x-y-2)(x+y-2)(x-y+2)$
この動画を見る
(91)$(3x-8)(16x+9)$
(92)$(25x-16)(4x+5)$
(93)$3(a+b)(b+c)(c+a)$
(94)$24xyz$
(95)$(x+y+2)(x-y-2)(x+y-2)(x-y+2)$
【#9】【因数分解100問】基礎から応用まで!(81)〜(90)【解説付き】
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(81)$(x+1)(x^2+x+1)(x^2-x+1)$
(82)$(x+1)(x^2+1)(x^4+1)$
(83)$(a+b-1)(a-2b+c)$
(84)$(a-c)^3$
(85)$(x^2+2x-2)(x^2+2x-21)$
この動画を見る
(81)$(x+1)(x^2+x+1)(x^2-x+1)$
(82)$(x+1)(x^2+1)(x^4+1)$
(83)$(a+b-1)(a-2b+c)$
(84)$(a-c)^3$
(85)$(x^2+2x-2)(x^2+2x-21)$
【#8】【因数分解100問】基礎から応用まで!(71)〜(80)【解説付き】
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(76)$(2x-3y+1)(3x+2y-1)$
(77)$(3x-4y)^2$
(78)$(x-y-1)(x^2+y^2+1+xy+x-y)$
(79)$(x^2+4x+6)(x^2+8x+6)$
(80)$-3(2x-1)(x-3)(x+2)$
この動画を見る
(76)$(2x-3y+1)(3x+2y-1)$
(77)$(3x-4y)^2$
(78)$(x-y-1)(x^2+y^2+1+xy+x-y)$
(79)$(x^2+4x+6)(x^2+8x+6)$
(80)$-3(2x-1)(x-3)(x+2)$