ますただ - 質問解決D.B.(データベース) - Page 11

ますただ

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

大学入試問題をベースに数学の動画を作成しています。大学過去問を多数解説しています。
頻繁に更新していますので是非ご視聴ください!

職業:数学者
職歴:高校非常勤(院生時代)、高専、大学 准教授
趣味:
①将棋 棋力は将棋ウォーズ4段、将棋倶楽部24はR2000前後(小学校5,6年のころに頑張ってました)
②麻雀 アカウントは消えましたが、無課金で天鵬で7段まで上がりました。
③ソフトテニス 中学から大学まで、10年間部活でやっていました。大学時代は4年になってもリーグにでていました。

大学入試問題#783「おもろいタイプ」 岡山県立大学中期(2011) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
f(x)=0x11t2 dt(0x1)において
012f(x) dxを求めよ

出典:2011年青山県立大学中期 入試問題
この動画を見る 

大学入試問題#782「もう何回目だろうか」 横浜市立大学(2004) #区分求積法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
limn{(2n+1)(2n+2)(2n+n)(n+1)(n+2)(n+n)}1n

出典:2004年横浜市立大学 入試問題
この動画を見る 

#宮崎大学(2017) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
02x2x dx

出典:2017年宮崎大学
この動画を見る 

大学入試問題#781「絶対値付きの積分は、なんか苦手!」 久留米大学医学部(2005) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#久留米大学
指導講師: ますただ
問題文全文(内容文):
0π2|sin x2sin 2x| dx

出典:2005年久留米大学医学部 入試問題
この動画を見る 

大学入試問題#780「この当て方は、凄すぎ!横浜市立の先生は視聴者かな!?w」 横浜市立大学(2024) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
x2(x sin x+cos x)2dx

出典:2024年横浜市立大学
この動画を見る 

#広島市立大学(2011) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
01dx(x2+1)2

出典:2011年広島市立大学
この動画を見る 

大学入試問題#779「コメントするなら普通の問題」 青山学院大学(2021) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
n2+2n+16 が整数となるような整数nをすべて求めよ

出典:2021年青山学院大学
この動画を見る 

大学入試問題#778「ウォリス積分なら一撃」 横浜国立大学(1994) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
0π2sin3θ cos2θ dθ

出典:1994年横浜国立大学 入試問題
この動画を見る 

大学入試問題#777「どこから手をつける?」 昭和大学医学部(2024)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
実数x,yx2+xy+y2=1を満たすとき
x+2xy+yの最大値と最小値を求めよ

出典:2024年昭和大学医学部 入試問題
この動画を見る 

大学入試問題#776「シグマの気持ち」 横浜国立大学(1996)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
limn+1nlog{nnn+2nn+4nn+2(n1)n}

出典:1996年横浜国立大学
この動画を見る 

#広島市立大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
012x(2x+1)2dx

出典:2016年広島市立大学
この動画を見る 

大学入試問題#775「ほぼ、詰んでる」 横浜国立大学(1998) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
02πx2|sin x| dx

出典:1998年横浜国立大学 入試問題
この動画を見る 

大学入試問題#774「基本的な良問」 横浜国立大学(1998) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1e1log(log(x+1))x+1dx

出典:1998年横浜国立大学 入試問題
この動画を見る 

#広島市立大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
cos3 xsin2 xdx

出典:2016年広島市立大学
この動画を見る 

大学入試問題#773「綺麗な良問」 青山学院大学(2019) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
素数p.qおよび自然数nに対し
1p+1q+1pq=1n
が成り立つような(p,q,n)の組をすべて求めよ

出典:2019年青山学院大学
この動画を見る 

大学入試問題#772「初手は好みがでそう」 広島市立大学(2012) #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
log xx3dx

出典:2012年広島市立大学 入試問題
この動画を見る 

#会津大学(2023) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
21xx+3 dx

出典:2023年会津大学
この動画を見る 

大学入試問題#771「たぶん良問!」 島根大学後期(2023) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#島根大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
012x22x22x+1dx

出典:2023年島根大学後期 入試問題
この動画を見る 

#会津大学 2020年 #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1ex log x dx

出典:2020年会津大学
この動画を見る 

大学入試問題#770「減点注意!」 千葉大学(2003) #微積の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
aは定数とし、nは2以上の整数とする。
関数f(x)=axnlog xax(x>0)の最小値が-1のとき、定積分1ef(x) dxの値をneを用いて表せ。

出典:2003年千葉大学 入試問題
この動画を見る 

#会津大学 2023年 #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
121x2e1xdx

出典:2023年会津大学
この動画を見る 

大学入試問題#769「受験生は抑えたい良問」 日本医科大学(2013) #微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
32limn(1+122++1n2)2を示せ。

出典:2013年日本医科大学 入試問題
この動画を見る 

大学入試問題#768 「ゴリゴリ音がでそう」 千葉大学(2005) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
0π|3 cos 2x+7cos x| dx

出典:2005年千葉大学 入試問題
この動画を見る 

大学入試問題#767「ほんまに茶番」 #岡山県立大学 (2018) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
I=0π6sin x3 sin x+cos xdx

J=0π6cos x3 sin x+cos xdx

IJの値を求めよ。

出典:2018年岡山県立大学 入試問題
この動画を見る 

大学入試問題#766「基本中の基本」 藤田医科大学(2017) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
不定方程式
5x+7y=2017 を満たす自然数の組(x,y)の個数を求めよ。

出典:2017年藤田医科大学 入試問題
この動画を見る 

大学入試問題#765「まったり解いて大丈夫」 千葉大学(2003) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
数列{an}を次のように定める。(n=2,3,)
a1=2
an=1n+(11n)an1

(1)一般項anを求めよ
(2)k=1nk2akを求めよ

出典:2003年千葉大学 入試問題
この動画を見る 

#宮崎大学 2023年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
20log(x+3)dx

出典:2023年宮崎大学
この動画を見る 

大学入試問題#764「よく作成できるもんです」 早稲田大学商学部(2024) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
cを1でない正の実数とする。
数列{an}が次の条件を満たしている。
a1=c,
(an)n+1(an+1)n=c(2n+1)
このとき、一般項ancを用いて表せ。

出典:2024年早稲田大学商学部 入試問題
この動画を見る 

#宮崎大学 2020年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
xx+22dx

出典:2020年宮崎大学
この動画を見る 

大学入試問題#763「読みの入った式変形」 東京理科大学理学部(2003) #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
0<t<2πとする
z=1+cos t+i sin t1cos ti sin t

(1)0<t<πにおけるzの偏角を弧度法で表せ
(2)π2π|z|dtを求めよ。

出典:2003年東京理科大学理学部 入試問題
この動画を見る 
PAGE TOP preload imagepreload image