ますただ
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
大学入試問題#461「どう処理すべきか」 関西大学(2009) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{-2x}}{1+e^{-x}} dx$
出典:2009年関西大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{e^{-2x}}{1+e^{-x}} dx$
出典:2009年関西大学 入試問題
大学入試数学#460「基本に寄り添って」 横浜国立大学(2000) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^32^{x^2}\ dx$
出典:2000年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} x^32^{x^2}\ dx$
出典:2000年横浜国立大学 入試問題
大学入試問題#459「構想力が問われる問題」 早稲田大学(2017) #連続関数
単元:
#大学入試過去問(数学)#関数と極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$C$:定数 $-1 \lt C \lt 1$
すべての実数$x$に対して
$f(x)+f(cx)=x^2$を満たす連続関数$f(x)$を求めよ
出典:2017年早稲田大学 入試問題
この動画を見る
$C$:定数 $-1 \lt C \lt 1$
すべての実数$x$に対して
$f(x)+f(cx)=x^2$を満たす連続関数$f(x)$を求めよ
出典:2017年早稲田大学 入試問題
大学入試問題#458「これはさすがに落とせない!」 横浜国立大学(2000) #定積分
単元:
#大学入試過去問(数学)#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{log\ x}{(1+x)^2} dx$
出典:2000年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{2} \displaystyle \frac{log\ x}{(1+x)^2} dx$
出典:2000年横浜国立大学 入試問題
大学入試問題#457「いかにしてサッパリ解くか!」 横浜国立大学(2001) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{dx}{x\sqrt{ 1+x^3 }}$
出典:2001年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{2} \displaystyle \frac{dx}{x\sqrt{ 1+x^3 }}$
出典:2001年横浜国立大学 入試問題
大学入試問題#456「きれいな整数問題」 一橋大学(2009) #整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$m^3+1^3=n^3+10^3$を満たす2以上の整数$m,n$の組($m,n$)をすべて求めよ。
出典:2009年一橋大学 入試問題
この動画を見る
$m^3+1^3=n^3+10^3$を満たす2以上の整数$m,n$の組($m,n$)をすべて求めよ。
出典:2009年一橋大学 入試問題
大学入試問題#455「落とすと落ちる問題② 横浜国立大学 後期 (2003) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{16} \displaystyle \frac{dx}{\sqrt{ x }+\sqrt[ 4 ]{ x }}$
出典:2003年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{16} \displaystyle \frac{dx}{\sqrt{ x }+\sqrt[ 4 ]{ x }}$
出典:2003年横浜国立大学 入試問題
大学入試問題#454「落とすと落ちる問題①」 横浜国立大学 後期 2003 #定積分
単元:
#大学入試過去問(数学)#三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \displaystyle \frac{dx}{\sin\ x+\sqrt{ 3 }\ \cos\ x}$
出典:2003年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{3}} \displaystyle \frac{dx}{\sin\ x+\sqrt{ 3 }\ \cos\ x}$
出典:2003年横浜国立大学 入試問題
ハルハルさんの積分問題「難易度やばめ:構想力が問われる問題【マニア向け】」
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$I=\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x-2\sin\ x+3}{\sin\ x-2\cos\ x+3} dx$
この動画を見る
$I=\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x-2\sin\ x+3}{\sin\ x-2\cos\ x+3} dx$
ハルハルさんの積分問題(準備) 難易度高めの最後まで気が抜けない!!
単元:
#三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$K=\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{dx}{\sin\ x-2\cos\ x+3}$
この動画を見る
$K=\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{dx}{\sin\ x-2\cos\ x+3}$
大学入試問題#453「落とせない問題」 信州大学(2022) #定積分
単元:
#大学入試過去問(数学)#対数関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2} \displaystyle \frac{dx}{x(1+log\ x^3)log\ x}$
出典:2022年信州大学 入試問題
この動画を見る
$\displaystyle \int_{e}^{e^2} \displaystyle \frac{dx}{x(1+log\ x^3)log\ x}$
出典:2022年信州大学 入試問題
大学入試問題#452「解き方は色々とあるかと思います」 横浜国立大学(2002) #定積分
単元:
#大学入試過去問(数学)#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{a} log(a^2+x^2) dx$
出典:2002年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{a} log(a^2+x^2) dx$
出典:2002年横浜国立大学 入試問題
大学入試問題#451「このタイプ、たまに出題される」 お茶の水女子大学1997 #不等式の応用
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#お茶の水女子大学
指導講師:
ますただ
問題文全文(内容文):
任意の正の数$x,y$に対して
$(x+y)^4 \leqq c^3(x^4+y^4)$が成り立つような$c$の値の範囲を求めよ。
出典:1997年お茶の水女子大学 入試問題
この動画を見る
任意の正の数$x,y$に対して
$(x+y)^4 \leqq c^3(x^4+y^4)$が成り立つような$c$の値の範囲を求めよ。
出典:1997年お茶の水女子大学 入試問題
大学入試問題#450「計算の正確性のみを問う問題」 横浜国立大学(2006) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x^2\sin^3x\ dx$
出典:2006年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\pi} x^2\sin^3x\ dx$
出典:2006年横浜国立大学 入試問題
大学入試問題#449「やることは決まっているが、計算力のみが必要」 東京理科大学(2013) #区分求積法
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \sqrt[ n ]{ \displaystyle \frac{{}_{ 8n } P_{ 4n }}{{}_{ 6n } P_{ 4n }} }$
出典:2013年東京理科大学 入試問題
この動画を見る
$\displaystyle \lim_{ n \to \infty } \sqrt[ n ]{ \displaystyle \frac{{}_{ 8n } P_{ 4n }}{{}_{ 6n } P_{ 4n }} }$
出典:2013年東京理科大学 入試問題
大学入試問題#448「深夜24時動画ストック0との闘い!」 藤田医科大学(2023) #曲線の長さ
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{5}{3}$において
曲線$y=2x\sqrt{ x }$の長さを求めよ。
出典:2023年藤田医科大学 入試問題
この動画を見る
$0 \leqq x \leqq \displaystyle \frac{5}{3}$において
曲線$y=2x\sqrt{ x }$の長さを求めよ。
出典:2023年藤田医科大学 入試問題
大学入試問題#447「まあ、沼にはまるよね」 昭和医科大学(2021) #方程式の応用
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師:
ますただ
問題文全文(内容文):
$(\sqrt{ n^2-9n+19 })^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ。
出典:2021年昭和大学医学部 入試問題
この動画を見る
$(\sqrt{ n^2-9n+19 })^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ。
出典:2021年昭和大学医学部 入試問題
大学入試問題「解法によっては、減点の可能性?しかし回避可能(コメント欄参照)」 信州大学(2022) #定積分1
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{2}}^{\frac{2}{3}\pi} \displaystyle \frac{1}{1+\cos\ x} dx$
出典:2022年信州大学 入試問題
この動画を見る
$\displaystyle \int_{\frac{\pi}{2}}^{\frac{2}{3}\pi} \displaystyle \frac{1}{1+\cos\ x} dx$
出典:2022年信州大学 入試問題
大学入試問題#445「何度か類題を解いたと思う」 藤田医科大学(2023) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
(1)$\displaystyle \int_{3}^{99} \sqrt{ \sqrt{ 1+x }-1 }\ dx$
(2)$\displaystyle \int_{1}^{3} \sqrt{ \displaystyle \frac{4}{x}-1 }\ dx$
出典:2023年藤田医科大学 入試問題
この動画を見る
(1)$\displaystyle \int_{3}^{99} \sqrt{ \sqrt{ 1+x }-1 }\ dx$
(2)$\displaystyle \int_{1}^{3} \sqrt{ \displaystyle \frac{4}{x}-1 }\ dx$
出典:2023年藤田医科大学 入試問題
大学入試問題#444「複素数の王道手筋」 神戸大学(1998) 文系 #複素数
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
$z$:虚数
(1)
$z+\displaystyle \frac{1}{z}$が実数の時
$|z|$の値$a$を求めよ。
(2)
$|z|=a$のとき
$\omega=(z+\sqrt{ 2 }+\sqrt{ 2 }i)^4$において$|\omega|,\ argw$の範囲を求めよ。
出典:1998年神戸大学 入試問題
この動画を見る
$z$:虚数
(1)
$z+\displaystyle \frac{1}{z}$が実数の時
$|z|$の値$a$を求めよ。
(2)
$|z|=a$のとき
$\omega=(z+\sqrt{ 2 }+\sqrt{ 2 }i)^4$において$|\omega|,\ argw$の範囲を求めよ。
出典:1998年神戸大学 入試問題
大学入試数学#443「とにかく受験生の心を折りたい積分」 東北医科薬科大学2020 #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int xe^{-x}\sin\ x\ dx$
出典:2020年東北医科薬科大学 入試問題
この動画を見る
$\displaystyle \int xe^{-x}\sin\ x\ dx$
出典:2020年東北医科薬科大学 入試問題
大学入試問題#442「難しくはないが、技をかけないと大変かも」 香川大学 #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\sin^5x\ \cos\ x)e^{2\sin\ x}\ dx$
出典:香川大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\sin^5x\ \cos\ x)e^{2\sin\ x}\ dx$
出典:香川大学 入試問題
大学入試問題#441「見た目と違って解いてみたら、良問と実感するはず!」 信州大学(2022) #不等式
単元:
#大学入試過去問(数学)#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$n$:自然数
$0 \leqq x$:実数
$log(1+x) \geqq \displaystyle \sum_{k=1}^{2n} \displaystyle \frac{(-1)^{k-1}}{k}x^k$を示せ
出典:2022年信州大学 入試問題
この動画を見る
$n$:自然数
$0 \leqq x$:実数
$log(1+x) \geqq \displaystyle \sum_{k=1}^{2n} \displaystyle \frac{(-1)^{k-1}}{k}x^k$を示せ
出典:2022年信州大学 入試問題
大学入試問題#440「この積分は初見では、きついが、アイデアは知っておくべき」 東北医科薬科大学(2023) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{(x^3+1)^2}$
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{x^3+1}=\displaystyle \frac{\sqrt{ 3 }}{9}\pi+\displaystyle \frac{1}{3}log\ 2$
出典:2023年東北医科薬科大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{(x^3+1)^2}$
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{x^3+1}=\displaystyle \frac{\sqrt{ 3 }}{9}\pi+\displaystyle \frac{1}{3}log\ 2$
出典:2023年東北医科薬科大学 入試問題
大学入試問題#439「国立大学らしい綺麗な問題」 群馬大学(2015) #微分方程式
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{x} \sqrt{ 1+\{f'(t)\}^2 }dt=-e^{-x}+f(x)$
(1)
$f(x)$を求めよ。
(2)
$\displaystyle \int_{0}^{1} x\sqrt{ 1+\{f'(x)\}^2 }\ dx$
出典:2015年群馬大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{x} \sqrt{ 1+\{f'(t)\}^2 }dt=-e^{-x}+f(x)$
(1)
$f(x)$を求めよ。
(2)
$\displaystyle \int_{0}^{1} x\sqrt{ 1+\{f'(x)\}^2 }\ dx$
出典:2015年群馬大学 入試問題
大学入試問題#438「積分区間が[0,π/6]なんですけど・・」 藤田医科大学(2023) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{\sin^33x}{\sin^33x+\cos^33x} dx$
出典:2023年藤田医科大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{\sin^33x}{\sin^33x+\cos^33x} dx$
出典:2023年藤田医科大学 入試問題
大学入試問題#437「y-xが邪魔なんだけど・・・・」 信州大学(2014) #不等式
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
すべての実数$x,y$に対して
$\displaystyle \frac{1}{1+x^2+(y-x)^2} \leqq \displaystyle \frac{a}{1+x^2+y^2}$が成り立つような$a$の値の範囲を求めよ。
出典:2014年信州大学医学部 入試問題
この動画を見る
すべての実数$x,y$に対して
$\displaystyle \frac{1}{1+x^2+(y-x)^2} \leqq \displaystyle \frac{a}{1+x^2+y^2}$が成り立つような$a$の値の範囲を求めよ。
出典:2014年信州大学医学部 入試問題
大学入試問題#436「2次試験までに一度は解くべき問題!!」 東京大学(1995) #不等式
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
すべての正の実数$x,y$に対し、
$\sqrt{ x }+\sqrt{ y } \leqq k\sqrt{ 2x+y }$ が成り立つような実数$k$の最小値を求めよ
出典:1995年東京大学 入試問題
この動画を見る
すべての正の実数$x,y$に対し、
$\sqrt{ x }+\sqrt{ y } \leqq k\sqrt{ 2x+y }$ が成り立つような実数$k$の最小値を求めよ
出典:1995年東京大学 入試問題
大学入試問題#435「基本的な性質が盛り沢山の良問!!」 信州大学(2014) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{3\sin\theta-\sin3\theta}{1+\cos\theta}d\theta$
出典:2014年信州大学理学部後期 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{3\sin\theta-\sin3\theta}{1+\cos\theta}d\theta$
出典:2014年信州大学理学部後期 入試問題
大学入試問題#434「基本的な式変形」 藤田医科大学(2023) #式変形
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師:
ますただ
問題文全文(内容文):
$\alpha=\sqrt{ 6+2\sqrt{ 5 } }$のとき
$\alpha^5-\alpha^4-12\alpha^3+12\alpha^2+16\alpha$の値を求めよ。
出典:2023年藤田医科大学 入試問題
この動画を見る
$\alpha=\sqrt{ 6+2\sqrt{ 5 } }$のとき
$\alpha^5-\alpha^4-12\alpha^3+12\alpha^2+16\alpha$の値を求めよ。
出典:2023年藤田医科大学 入試問題