学校別大学入試過去問解説(数学) - 質問解決D.B.(データベース) - Page 15

学校別大学入試過去問解説(数学)

大学入試問題#749「まあミスれん」 東京理科大学(2000) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int e^{\sqrt[ 3 ]{ x }} dx$

出典:2000年東京理科大学工学部 入試問題
この動画を見る 

京都大 2024文系数学

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ある自然数を八進法,九進法,十進法で表したら桁数が同じ最大の自然数は?
$0.3010<\log_{10}{3}<0.3011$
$0.4771<\log_{10}{2}<0.4772$

2024京都大過去問
この動画を見る 

【高校数学】毎日積分77日目~47都道府県制覇への道~【⑳和歌山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【和歌山大学 2023】
次の問いに答えよ。ただし、$\sqrt{3}>1.73$である。
(1)$ x=tant$の時,$\displaystyle \frac{1}{1+x^2}$を$cost$を用いて表せ。
(2) 定積分$\displaystyle \int_0^{\frac{1}{3}}\frac{1}{1+x^2}dx$を求めよ。
(3) すべての実数$x$に対して、$\displaystyle \frac{1}{1+x^2}≧1+ax^2$が成り立つような実数$a$の最大値を求めよ。
(4) 円周率は$3.07$より大きいことを示せ。
この動画を見る 

サイコロ🎲3回投げる確率 2024明大中野

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1から6の目のサイコロを3回投げる。出た目の数を順にa,b,cとするとき
$(a-1)(b-2)(c-3)=0$を満たす確率を求めよ
2024明治大学付属中野高等学校
この動画を見る 

大学入試問題#748「計算力が試される」 早稲田大学人間科学部(2006) 積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=x+2\displaystyle \int_{0}^{\pi} \sin(x-t)f(t) dt$を満たす関数$f(x)$を求めよ。

出典:2006年早稲田大学人間科学部 入試問題
この動画を見る 

#東海大学医学部(2019) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\tan\ x-\sin\ x}{x^3}$

出典:2019年東海大学医学部
この動画を見る 

【高校数学】19回目にして遂に計算ミス発生!?毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【大阪大学 2023】
$n$を$2$以上の自然数とする。
(1) $0≦x≦1$の時、次の不等式が成り立つことを示せ。
$\displaystyle \frac{1}{2}x^n≦(-1)^n\{\frac{1}{x+1}-1-\sum_{k=2}^n(-1)^{k-1}\}≦x^n-\frac{1}{2}x^{n+1}$
(2) $\displaystyle a_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\displaystyle \lim_{n\to \infty} (-1)^nn(a_n-log2)$
この動画を見る 

平方根 整数部分と小数部分 2024明大中野

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$5-\sqrt 7$の整数部分をa,小数部分をb
$\frac{3a^2-5ab+2b^2}{a^2-ab}=?$

2024明治大学付属中野高等学校
この動画を見る 

大学入試問題#747「解き方は好み」 早稲田大学国際教養学部(2006)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
実数$x,y$が$2x^2+3y^2=1$を満たすとき、
$x^2-y^2+xy$の最大値を求めよ。

出典:2006年早稲田大学国際教養学部 入試問題
この動画を見る 

東大 文系数学 2024

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0.3<\log_{10}{2}<0.31$
を用いてよい
(1)$5^n>10^{19}$
となる最小の自然数n
(2)$5^m+4^m>10^{19}$
となる最小の自然数m

2024東大文系過去問
この動画を見る 

【高校数学】毎日積分75日目~47都道府県制覇への道~【⑱兵庫】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【神戸大学 2023】
媒介変数表示
$\displaystyle x=sint, y=cos(t-\frac{π}{6})sint (0≦t≦π)$
で表される曲線を$C$とする。以下の問に答えよ。
(1) $\displaystyle \frac{dx}{dt}=0$ または $\displaystyle \frac{dy}{dt}=0$となる$t$の値を求めよ。
(2) $C$の概形を$xy$平面上に描け。
(3) $C$の$y≦0$の部分と$x$軸で囲まれた図形の面積を求めよ。
この動画を見る 

因数分解 2024明大中野

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2+3xy+3x-18y-54$
2024明治大学付属中野高等学校
この動画を見る 

大学入試問題#746「慣れれば瞬間部分積分!?」 東京理科大学(2024) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{3}^{5} (x-3)^3(5-x)^5 dx$

出典:2024年東京理科大学 入試問題
この動画を見る 

答えの数値で安心する問題 聖マリアンナ医科大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+\sqrt[3]{4}X+4=0$
の3つの解をα,β,γとする
$(10\sqrt[3]{2}-α)(10\sqrt[3]{2}-β)(10\sqrt[3]{2}-γ)$
の値を求めよ。

聖マリアンナ医科大過去問
この動画を見る 

昭和大学医学部(2006) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\tan\ x-\sin\ x}{x^2}$

出典:2006年昭和大学医学部
この動画を見る 

大学入試問題#745「落ち着けばどうにかなる」 早稲田大学理工学部(2002) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$とする。
$I(\theta)=\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-\tan\theta\cos\ x|\sin2x\ dx$

(1)$I(\theta)$を求めよ。
(2)$I(\theta)$を最小にする$\theta$に対し、$\cos\theta$の値を求めよ。

出典:2002年早稲田大学理工学部 入試問題
この動画を見る 

北海道大学(1970) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=0}^{n-1} \displaystyle \frac{1}{\sqrt{ 4n^2-k^2 }}$

出典:1970年北海道大学
この動画を見る 

【高校数学】毎日積分73日目~47都道府県制覇への道~【⑰岡山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【岡山大学 2023】
$a<0,b>0$とする。2つの曲線$\displaystyle C:y=\frac{1}{x^2+1}$と$D:y=ax^2+b$がある。いま、$x>0$で$C$と$D$が共有点をもち、その点における2つの曲線の接線が一致しているとする。その共有点の$x$座標を$t$とし、$D$と$x$軸で囲まれた部分の面積を$S$とする。以下の問いに答えよ。
(1) $D$と$x$軸の交点の$x$座標を$±p$とし、$p>0$とする。$S$を$a$と$p$を用いて表せ。
(2) $a,b$を$t$を用いて表せ。
(3) $S$を$t$を用いて表せ。
(4) $t>0$の範囲で$S$が最大となるような$D$の方程式を求めよ。
この動画を見る 

大学入試問題#744「ひっかける場所はどこだ?」 早稲田大学政治経済学部(2005) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{2y}+\displaystyle \frac{1}{3z}=\displaystyle \frac{4}{3}$を満たす正の整数の組$(x,y,z)$をすべて求めよ。

出典:2005年早稲田大学政治経済学部 入試問題
この動画を見る 

#福岡教育大学 (2020) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x}{8+\cos^2\ x} dx$

出典:2020年福岡教育大学
この動画を見る 

【高校数学】毎日積分72日目~47都道府県制覇への道~【⑯鳥取】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【鳥取大学 2023】
負でない整数$n=0,1,2,・・・$と正の実数$x>0$に対し、
$\displaystyle I_n=\frac{1}{n!}\int_0^xt^ne^{-t}dt$
とおく。以下の問いに答えよ。
(1) $I_0,I_1$を求めよ。
(2) $n=1,2,3,・・・$に対し、$I_n$と$I_{n-1}$の関係式を求めよ。
(3) $I_n(n=0,1,2,・・・)$を求めよ。
この動画を見る 

大学入試問題#743「単なる場合分け?」 早稲田大学政治経済学部(2003) #対数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,a \neq 1$とする。
このとき、$x$の不等式$log_a(x+2) \geq log_{a^2}(3x+16)$を解け

出典:2003年早稲田大学政治経済学部 入試問題
この動画を見る 

【高校数学】毎日積分71日目~47都道府県制覇への道~【⑮広島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【広島大学 2023】
関数$\displaystyle f(x)=log\frac{3x+3}{x^2+3}$について、次の問いに答えよ。
(1) $y=f(x)$のグラフの概形をかけ。ただし、グラフの凹凸は調べなくてよい。
(2) $s$を定数とするとき、次の$x$についての方程式(*)の異なる実数解の個数を調べよ。
(*) $f(x)=s$
(3) 定積分$\displaystyle\int_0^3\frac{2x^2}{x^2+3}dx$の値を求めよ。
(4) (2)の(*)が実数解をもつ$s$に対して、(2)の(*)の実数解のうち最大のものから最小のものを引いた差を$g(s)$とする。ただし、(2)の(*)の実数解が一つだけであるときには$g(s)=0$とする。関数$f(x)$の最大値を$α$とおくとき、定積分$\displaystyle\int_0^αg(s)ds$の値を求めよ。
この動画を見る 

大学入試問題#742「落としたくないかな~~」 早稲田大学理工学部(2001) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ M \to \infty } \displaystyle \int_{0}^{M} e^{-2x}\sin^2\ x\ dx$

出典:2001年早稲田大学理工学部 入試問題
この動画を見る 

【高校数学】毎日積分70日目~47都道府県制覇への道~【⑭島根】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1) $\displaystyle \frac{n+5}{n+2}≦2$を示せ。
(2) $\displaystyle \int_0^1xf(x)dx≦\frac{2}{3}(\int_0^1f(x)dx)^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
この動画を見る 

大学入試問題#741「頭のラジオ体操」 東京理科大学(2009) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$b_1=\displaystyle \frac{1}{2},$
$b_{n+1}=-3b_n+\displaystyle \frac{2n^2-6n-17}{n^2+3n+2}$を満たす数列$\{b_n\}$の一般項を求めよ。

出典:2009年東京理科大学全学部 入試問題
この動画を見る 

東京都立大学 2023年 #定積分1 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京都立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} \theta^2\sin\theta\ d\theta$

出典:2023年東京都立大学
この動画を見る 

【高校数学】毎日積分69日目~47都道府県制覇への道~【⑬山口】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【山口大学 2023】
座標平面上で、不等式
$\displaystyle \frac{1}{4}x^2-2≦y≦0またはx^2+y^2≦4$
の表す領域を$D_1$とし、不等式
$y>\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_2$とし、不等式
$y>-\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_3$とする。また、$D_2$と$D_3$の和集合を$X$とし、$D_1$から$X$を除いた領域を$Y$とする。このとき、次の問いに答えなさい。
(1)領域$D_1$を図示しなさい。
(2)領域$D_1$の面積を求めさない。
(3)領域$Y$を図示しなさい。
(4)領域$Y$の面積を求めなさい。
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る 

大学入試問題#740「解き方色々」 東京医科大学(2024) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{1} (x+2)(x-1)^7 dx$

出典:2024年東京医科大学 入試問題
この動画を見る 
PAGE TOP