学校別大学入試過去問解説(数学)
#山梨大学2013#定積分#ますただ
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#山梨大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$
出典:2013年山梨大学
この動画を見る
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$
出典:2013年山梨大学
大学入試問題#885「油断したら沼るかも」 #奈良県立医科大学(2014) 三角関数と整数問題
単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師:
ますただ
問題文全文(内容文):
$\sqrt{ \displaystyle \frac{a}{20} } \lt \cos\displaystyle \frac{\pi}{8} \lt \sqrt{ \displaystyle \frac{a+1}{20} }$を満たす整数$a$を求めよ。
出典:2014年奈良県立医科大学
この動画を見る
$\sqrt{ \displaystyle \frac{a}{20} } \lt \cos\displaystyle \frac{\pi}{8} \lt \sqrt{ \displaystyle \frac{a+1}{20} }$を満たす整数$a$を求めよ。
出典:2014年奈良県立医科大学
#福岡大学#不定積分#ますただ
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福岡大学
指導講師:
ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}$ $dx$
出典:福岡大学
この動画を見る
以下の不定積分を解け
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}$ $dx$
出典:福岡大学
#愛媛大学2014#極限#ますただ
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(\sqrt{ x^2+x+4 }-\sqrt{ x^2+4 })\sin2x}{x^2}$
出典:2024年愛媛大学
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(\sqrt{ x^2+x+4 }-\sqrt{ x^2+4 })\sin2x}{x^2}$
出典:2024年愛媛大学
大学入試問題#884「ミスれん」 #東京理科大学(2022) #定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$
出典:2022年東京理科大学
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$
出典:2022年東京理科大学
#小樽商科大学#不定積分#ますただ
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#小樽商科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+2}-\sqrt{ 2 }}$ $dx$
出典:小樽商科大学
この動画を見る
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+2}-\sqrt{ 2 }}$ $dx$
出典:小樽商科大学
#山梨大学2013#定積分#ますただ
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} log(x+11)$ $dx$
出典:2013年山梨大学
この動画を見る
$\displaystyle \int_{-10}^{0} log(x+11)$ $dx$
出典:2013年山梨大学
#玉川大学#不定積分#ますただ
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int e^{\sin x} \sin2x$ $dx$
出典:玉川大学
この動画を見る
以下の不定積分を解け
$\displaystyle \int e^{\sin x} \sin2x$ $dx$
出典:玉川大学
#信州大学 #不定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int e^x(e^x+1)^2 dx$
出典:信州大学
この動画を見る
以下の不定積分を解け
$\displaystyle \int e^x(e^x+1)^2 dx$
出典:信州大学
#高知工科大学2020 #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高知工科大学
指導講師:
ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{1}^{\sqrt{ e }} \displaystyle \frac{(log x)^3}{x} dx$
出典:2020年高知工科大学
この動画を見る
以下の定積分を解け。
$\displaystyle \int_{1}^{\sqrt{ e }} \displaystyle \frac{(log x)^3}{x} dx$
出典:2020年高知工科大学
#藤田保健衛生大学2012 #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
以下の定積分を解け。
$a \gt 0,b \gt 0$
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{\{ax+b(1-x\}^2)} dx$
出典:2010年藤田保健衛生大学
この動画を見る
以下の定積分を解け。
$a \gt 0,b \gt 0$
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{\{ax+b(1-x\}^2)} dx$
出典:2010年藤田保健衛生大学
大学入試問題#873「コメント欄が賑わいそう」 #東京理科大学(2022) #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{2}{(x+1)(x+2)(x+3)} dx$
出典:2022年東京理科大学 大学入試問題
この動画を見る
$\displaystyle \int_{0}^{4} \displaystyle \frac{2}{(x+1)(x+2)(x+3)} dx$
出典:2022年東京理科大学 大学入試問題
#自治医科大学2015 #極限
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ (n+2)(n+3) }-\sqrt{ (n-2)(n-3) }\}$
出典:2015年自治医科大学
この動画を見る
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ (n+2)(n+3) }-\sqrt{ (n-2)(n-3) }\}$
出典:2015年自治医科大学
#関西学院大学2012 #不定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int x^m log$ $x$ $dx(m \neq -1)$
出典:2012年関西学院大学
この動画を見る
$\displaystyle \int x^m log$ $x$ $dx(m \neq -1)$
出典:2012年関西学院大学
#関西大学2012 #三角関数
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師:
ますただ
問題文全文(内容文):
$x-y=\displaystyle \frac{\pi}{3}$のとき
$\displaystyle \frac{\sin x-\sin y}{\cos x+\cos y}$を求めよ。
出典:2012年関西大学
この動画を見る
$x-y=\displaystyle \frac{\pi}{3}$のとき
$\displaystyle \frac{\sin x-\sin y}{\cos x+\cos y}$を求めよ。
出典:2012年関西大学
大学入試問題#872「受験生は一度は解くべき」 #東北大学医学部AO(2019) #極限
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$a$を実数とする。
次の極限を求めよ。
$\displaystyle \lim_{ n \to \infty } (1+a^{2n})^{\frac{1}{n}}$
出典:2019年東北大学医学部AO
この動画を見る
$a$を実数とする。
次の極限を求めよ。
$\displaystyle \lim_{ n \to \infty } (1+a^{2n})^{\frac{1}{n}}$
出典:2019年東北大学医学部AO
#青山学院大2019 #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \sin x \sin 2x$ $dx$
出典:2019年青山学院大学
この動画を見る
以下の不定積分を解け。
$\displaystyle \int \sin x \sin 2x$ $dx$
出典:2019年青山学院大学
大学入試問題#871「初手が大事な基本問題」 #日本工業大学(2023) #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }} \displaystyle \frac{2x^2-x+2}{x^3+x} dx$
出典:2023年日本工業大学
この動画を見る
$\displaystyle \int_{1}^{\sqrt{ 3 }} \displaystyle \frac{2x^2-x+2}{x^3+x} dx$
出典:2023年日本工業大学
#自治医科大(2015) #定積分 #Shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{35}{2}\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7x$ $dx$
出典:2015年自治医科大学
この動画を見る
$\displaystyle \frac{35}{2}\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7x$ $dx$
出典:2015年自治医科大学
#青山学院大学(2006) #定積分 #Shorts
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log3} (e^x+e^{2x}-2e^{-x}) dx$
出典:2006年青山学院大学
この動画を見る
$\displaystyle \int_{0}^{log3} (e^x+e^{2x}-2e^{-x}) dx$
出典:2006年青山学院大学
大学入試問題#870「基本問題」 #東北大学医学部AO(2019) #数列
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$S_n=2a_n+3n$を満たす数列$\{a_n\}$の一般項$a_n$を求めよ。
出典:2019年東北大学医学部AO
この動画を見る
$S_n=2a_n+3n$を満たす数列$\{a_n\}$の一般項$a_n$を求めよ。
出典:2019年東北大学医学部AO
大学入試問題#868「ヒントがあれば、どうってことない」 #埼玉医科大学(2010) #式変形
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉医科大学
指導講師:
ますただ
問題文全文(内容文):
$a \leq b \leq c$とする。
$\sqrt{ 10+\sqrt{ 24 }+\sqrt{ 40 }+\sqrt{ 60 } }=\sqrt{ a }+\sqrt{ b }+\sqrt{ c }=$であるとき、$a,b,c$の値を求めよ。
出典:2010年埼玉医科大学
この動画を見る
$a \leq b \leq c$とする。
$\sqrt{ 10+\sqrt{ 24 }+\sqrt{ 40 }+\sqrt{ 60 } }=\sqrt{ a }+\sqrt{ b }+\sqrt{ c }=$であるとき、$a,b,c$の値を求めよ。
出典:2010年埼玉医科大学
大学入試問題#867「これは、過去1番の難問かも」 #産業医科大学(2012) #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{ 1-2\sin 2x+3\cos^2x }$ $dx$
出典:2012年産業医科大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{ 1-2\sin 2x+3\cos^2x }$ $dx$
出典:2012年産業医科大学
大学入試問題#866「まあ、なんとかなるわな」 #東京女子医科大学(2005) #式変形
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$(1-\sqrt[ 3 ]{ 2 }+\sqrt[ 3 ]{ 4 })^8$を計算せよ
出典:2005年東京女子医科大学
この動画を見る
$(1-\sqrt[ 3 ]{ 2 }+\sqrt[ 3 ]{ 4 })^8$を計算せよ
出典:2005年東京女子医科大学
福田の数学〜立教大学2024年理学部第1問(2)〜17のn乗の1の位
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$17^n$の1の位の数が1になる最小の自然数$n$は$\boxed{\ \ イ\ \ }$である。また、$17^{555}$の1の位の数を求めると、$\boxed{\ \ ウ\ \ }$である。
この動画を見る
$\Large{\boxed{1}}$ (2)$17^n$の1の位の数が1になる最小の自然数$n$は$\boxed{\ \ イ\ \ }$である。また、$17^{555}$の1の位の数を求めると、$\boxed{\ \ ウ\ \ }$である。
大学入試問題#865「中学生の問題か!?」 #岩手医科大学(2008) #方程式
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x-1)(y-1)=9 \\
x+y-\sqrt{ x^2+xy+y^2 }=1
\end{array}
\right.
\end{eqnarray}$を解け。
出典:2008年岩手医科大学
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x-1)(y-1)=9 \\
x+y-\sqrt{ x^2+xy+y^2 }=1
\end{array}
\right.
\end{eqnarray}$を解け。
出典:2008年岩手医科大学
福田の数学〜立教大学2024年理学部第1問(1)〜三角方程式の基本
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)実数$x$が$3\cos x$=$\sin^2x$ を満たすとき、$\cos x$の値は$\boxed{\ \ ア\ \ }$である。
この動画を見る
$\Large{\boxed{1}}$ (1)実数$x$が$3\cos x$=$\sin^2x$ を満たすとき、$\cos x$の値は$\boxed{\ \ ア\ \ }$である。
大学入試問題#864「基本に忠実に」 #宮崎大学(2013) #定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{e^{4x}}{e^{2x}+2} dx$
出典:2013年宮崎大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{e^{4x}}{e^{2x}+2} dx$
出典:2013年宮崎大学 入試問題
福田の数学〜慶應義塾大学2024年経済学部第6問〜3次関数の増減と最大値と面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $a$,$b$,$p$を実数とする。関数$f(x)$=$x^3$+$ax^2$+$bx$+17 は$x$=$p$で極大値、$x$=$-4p$で極小値をとり、$f(-2p)$=-17 を満たすとする。
(1)$a$,$b$,$p$の値、および$f(x)$の極大値$M$、極大値$m$を、それぞれ求めよ。
(2)(1)で求めた$a$,$b$および0≦$t$≦5 を満たす実数$t$に対して、区間0≦$x$≦$t$ における|$f(x)$|の最大値を$g(t)$とする。$t$の値について場合分けをして、それぞれの場合に$g(t)$を求めよ。
(3)(2)で求めた$g(t)$に対して、定積分$I$=$\displaystyle\int_0^5g(t)dt$ を求めよ。
この動画を見る
$\Large{\boxed{6}}$ $a$,$b$,$p$を実数とする。関数$f(x)$=$x^3$+$ax^2$+$bx$+17 は$x$=$p$で極大値、$x$=$-4p$で極小値をとり、$f(-2p)$=-17 を満たすとする。
(1)$a$,$b$,$p$の値、および$f(x)$の極大値$M$、極大値$m$を、それぞれ求めよ。
(2)(1)で求めた$a$,$b$および0≦$t$≦5 を満たす実数$t$に対して、区間0≦$x$≦$t$ における|$f(x)$|の最大値を$g(t)$とする。$t$の値について場合分けをして、それぞれの場合に$g(t)$を求めよ。
(3)(2)で求めた$g(t)$に対して、定積分$I$=$\displaystyle\int_0^5g(t)dt$ を求めよ。
福田のおもしろ数学182〜2x3x5x7x11x13の10乗の桁数
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$(2×3×5×7×11×13)^{10}$ の10進法での桁数を求めよ。
この動画を見る
$(2×3×5×7×11×13)^{10}$ の10進法での桁数を求めよ。