学校別大学入試過去問解説(数学) - 質問解決D.B.(データベース) - Page 4

学校別大学入試過去問解説(数学)

#福岡大学#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福岡大学
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}$ $dx$

出典:福岡大学
この動画を見る 

#愛媛大学2014#極限#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(\sqrt{ x^2+x+4 }-\sqrt{ x^2+4 })\sin2x}{x^2}$

出典:2024年愛媛大学
この動画を見る 

大学入試問題#884「ミスれん」 #東京理科大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$

出典:2022年東京理科大学
この動画を見る 

#小樽商科大学#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+2}-\sqrt{ 2 }}$ $dx$

出典:小樽商科大学
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(2)〜17のn乗の1の位

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$17^n$の1の位の数が1になる最小の自然数$n$は$\boxed{\ \ イ\ \ }$である。また、$17^{555}$の1の位の数を求めると、$\boxed{\ \ ウ\ \ }$である。
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(1)〜三角方程式の基本

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)実数$x$が$3\cos x$=$\sin^2x$ を満たすとき、$\cos x$の値は$\boxed{\ \ ア\ \ }$である。
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第6問〜3次関数の増減と最大値と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $a$,$b$,$p$を実数とする。関数$f(x)$=$x^3$+$ax^2$+$bx$+17 は$x$=$p$で極大値、$x$=$-4p$で極小値をとり、$f(-2p)$=-17 を満たすとする。
(1)$a$,$b$,$p$の値、および$f(x)$の極大値$M$、極大値$m$を、それぞれ求めよ。
(2)(1)で求めた$a$,$b$および0≦$t$≦5 を満たす実数$t$に対して、区間0≦$x$≦$t$ における|$f(x)$|の最大値を$g(t)$とする。$t$の値について場合分けをして、それぞれの場合に$g(t)$を求めよ。
(3)(2)で求めた$g(t)$に対して、定積分$I$=$\displaystyle\int_0^5g(t)dt$ を求めよ。
この動画を見る 

福田のおもしろ数学182〜2x3x5x7x11x13の10乗の桁数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$(2×3×5×7×11×13)^{10}$ の10進法での桁数を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第5問〜ある対数とそれを超えない最大の整数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ $x$を正の実数とする。$m$と$n$は、それぞれ$m$≦$\displaystyle\log_4\frac{x}{8}$, $n$≦$\displaystyle\log_2\frac{8}{x}$ を満たす最大の整数とし、さらに、$\alpha$=$\displaystyle\log_4\frac{x}{8}$-$m$, $\beta$=$\displaystyle\log_2\frac{8}{x}$-$n$ とおく。
(1)$\log_2x$を、$m$と$\alpha$を用いて表せ。
(2)$2\alpha$+$\beta$ の取りうる値を全て求めよ。
(3)$n$=$m$-1 のとき、$m$と$n$の値を求めよ。
(4)$n$=$m$-1 となるために$x$が満たすべき必要十分条件を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第4問〜正四面体の位置ベクトルと面積体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $p$,$q$を正の実数とし、Oを原点とする座標空間内に3点A(3,$-\sqrt 3$,0),B(3,$\sqrt 3$,0),C($p$,0,$q$)をとる。ただし、四面体OABCは1辺の長さが$2\sqrt 3$の正四面体であるとする。
(1)$p$および$q$の値を求めよ。
以下、点$\displaystyle\left(\frac{3}{2},0,\frac{q}{2}\right)$に関してO,A,B,Cと対称な点を、それぞれD,E,F,Gとする。
(2)直線DGと平面ABCとの交点Hの座標を求めよ。
(3)直線CBと平面DEGとの交点をI、直線CAと平面DFGとの交点をJとする。
四角形CJHIの面積$S$と四角錐G-CJHIの体積$V$を、それぞれ求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第3問〜指数関数で定義された数列の漸化式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 実数$a$に対して$f(a)$=$\displaystyle\frac{1}{2}(2^a-2^{-a})$とおく。また、$A$=$2^a$とする。
(1)等式$\displaystyle\left(A-\frac{1}{A}\right)^3$=$\displaystyle\boxed{\ \ ア\ \ }\left(A-\frac{1}{A}\right)^3$-$\displaystyle\boxed{\ \ イ\ \ }\left(A-\frac{1}{A}\right)$ より、実数$a$に対して
$\left\{f(a)\right\}^3$=$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}f(3a)$-$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}f(a)$ ...①が成り立つ。
(2)実数$a$,$b$に対して$f(a)$=$b$が成り立つならば、$A$=$2^a$は2次方程式
$A^2$-$\boxed{\ \ キ\ \ }bA$-$\boxed{\ \ ク\ \ }$=0
を満たす。$2^a$>0より、$a$は$b$を用いて
$a$=$\log_2\left(\boxed{\ \ ケ\ \ }b+\sqrt{b^2+\boxed{\ \ コ\ \ }}\right)$ ...②
と表せる。つまり、任意の実数bに対して$f(a)$=$b$となる実数$a$が、ただ1つに定まる。
以下、数列$\left\{a_n\right\}$に対して$f(a_n)$=$b_n$ ($n$=1,2,3,...)で定まる数列$\left\{b_n\right\}$が、関係式
$4b_{n+1}^3$+$3b_{n+1}$-$b_n$=0 ($n$=1,2,3,...) ...③
を満たすとする。
(3)①と③から$f\left(\boxed{\ \ サ\ \ }a_{n+1}\right)$=$f(a_n)$ ($n$=1,2,3,...)となるので、(2)より、
$a_n$=$\displaystyle\frac{a_1}{\boxed{\ \ シ\ \ }^{n-p}}$ ($n$=1,2,3,...)が得られる。ここで、$p$=$\boxed{\ \ ス\ \ }$である。
(4)$n$≧2に対して、$S_n$=$\displaystyle\sum_{k=2}^n3^{k-1}b_k^3$ とおく。$c_n$=$3^nb_n$ ($n$=1,2,3,...)で定まる数列$\left\{c_n\right\}$の階差数列を用いると、③より、
$S_n$=$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}b_1$-$\frac{\boxed{\ \ タ\ \ }^n}{\boxed{\ \ チ\ \ }}b_n$ ($n$=2,3,4,...)
となる。ゆえに、$b_1$=$\displaystyle\frac{4}{3}S_5$-108 が成り立つならば$a_1$=$\boxed{\ \ ツテト\ \ }\log_2\boxed{\ \ ナ\ \ }$ である。
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第2問〜確率の基本性質と非復元抽出の条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 袋の中に、1から9までの番号を重複なく1つずつ記入したカードが9枚入っている。A,B,C,Dの4人のうちDがさいころを投げて、1の目が出たらAが、2または3の目が出たらBが、その他の目が出たらCが、袋の中からカードを1枚引き、カードに記入された番号を記録することを試行という。ただし、1度引いたカードは袋に戻さない。この試行を3回続けて行う。また、1回目の試行前のA,B,Cの点数をそれぞれ0としたうえで、以下の(a),(b)に従い、各回の試行後のA,B,Cの点数を定める。
(a)各回の試行においてカードを引いた人は、その回の試行前の自分の点数に、その回の試行で記録した番号を加え、試行後の点数とする。
(b)各回の試行においてカードを引いていない人は、その回の試行前の自分の点数を、そのまま試行後の点数とする。
(1)1回目の試行後、Bの点数が3の倍数となる確率は$\frac{\boxed{ア}}{\boxed{イ}}$である。ただし、0はすべての整数の倍数である。
(2)2回目の試行後、A,B,Cのうち、1人だけの点数が0である確率は$\frac{\boxed{ウエ}}{\boxed{オカ}}$である。
(3)2回目の試行後のAの点数が5以上となる確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。
(4)2回目の試行後のAの点数が5以上であるとき、3回目の試行後のA,B,Cの点数がすべて5以上である条件付き確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
この動画を見る 

【別解の考え方自身は超大切…!】因数分解:法政大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#法政大学
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学高等学校

$(a^2+2a)^2-2(a^2+2a)-3$
を因数分解しなさい。
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第1問(2)〜三角関数への置き換えによる分数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(2)$\theta$は|$\theta$|<$\displaystyle\frac{\pi}{2}$の範囲の定数とする。$x$=$\tan\theta$とおくと、$\displaystyle\frac{x}{x^2+1}$=$\frac{\boxed{ク}}{\boxed{ケ}}\sin2\theta$かつ$\displaystyle\frac{1}{x^2+1}$=$\frac{\boxed{コ}}{\boxed{サ}}(\cos2\theta$+1)であるので、$\displaystyle y=\frac{x^2+3x+5}{x^2+1}$とすると、
$\displaystyle y=\frac{\boxed{シ}}{\boxed{ス}}\sin(2\theta+\alpha)$+$\boxed{セ}$
と表せる。ただし、$\cos\alpha$=$\frac{\boxed{ソ}}{\boxed{タ}}$, $\sin\alpha$=$\frac{\boxed{チ}}{\boxed{ツ}}$である。また、|$x$|≦1に対応する$\theta$の範囲が|$\theta$|≦$\displaystyle\frac{\pi}{\boxed{テ}}$であることに注意すると、|$x$|≦1における$y$の取りうる値の最大値は$\frac{\boxed{トナ}}{\boxed{ニ}}$、最小値は$\frac{\boxed{ヌ}}{\boxed{ネ}}$ である。
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第1問(1)〜2次方程式が整数解をもつ条件

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$p$を実数とする。$x$の2次方程式$x^2$-($p$-9)$x$-$p$+1=0 の解は整数$m$<0<$n$が成り立つとする。このとき$mn$+$m$+$n$=$\boxed{\ \ アイ\ \ }$なので、$m$=$\boxed{\ \ ウエ\ \ }$, $n$=$\boxed{\ \ オ\ \ }$, $p$=$\boxed{\ \ カキ\ \ }$ である。
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第4問〜空間に浮かぶ四面体の平面による切り口の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標空間の4点O(0,0,0),A(-3,-1,1),B(2,-2,2),C(3,3,3)を頂点とする四面体OABCの、平面$z$=$t$による切り口を$S_t$とする。
(1)$S_t$は1<$t$<2のとき四角形となり、$t$=1および$t$=2のとき三角形となる。
1<$t$1 となるので、点Eはこの六面体の外にある。
(さ),(し),(す)の選択肢:ABC,ABD,ACD,BCD,OAD,OBD,OCD
(4)1<$t$<2に対して、(3)の六面体を平面$z$=$t$で切った切り口の面積を$U(t)$とすると、$U(t)$は$t$=$\boxed{\ \ (た)\ \ }$(ただし1<$\boxed{\ \ (た)\ \ }$<2)において最大値$\boxed{\ \ (ち)\ \ }$をとる。
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第3問〜四面体の切断面の面積と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ -1,0,1以外のすべての実数$x$に対して定義された関数
$f(x)$=$\displaystyle\frac{1}{3x(x^2-1)}$
を考える。
(1)$f(x)$は$x$=$\boxed{\ \ (あ)\ \ }$において極小値$\boxed{\ \ (い)\ \ }$をとり、$x$=$\boxed{\ \ (う)\ \ }$において極大値$\boxed{\ \ (え)\ \ }$をとる。
(2)曲線$y$=$f(x)$の概形を描きなさい。
(3)直線$y$=$mx$が曲線$y$=$f(x)$とちょうど4点で交わるとき、定数$m$の値の範囲は$\boxed{\ \ (お)\ \ }$である。
(4)$a$=$\boxed{\ \ (か)\ \ }$, $b$=$\boxed{\ \ (き)\ \ }$, $c$=$\boxed{\ \ (く)\ \ }$とすると、つぎの恒等式が成り立つ。
$f(x)$=$\displaystyle\frac{a}{x-1}$+$\displaystyle\frac{b}{x}$+$\displaystyle\frac{c}{x+1}$
(5)直線$y$=$mx$ (ただし$m$>0)が曲線$y$=$f(x)$と第1象限において交わる点Pの$x$座標を$x(m)$とし、
$A(m)$=$\displaystyle\lim_{T \to \infty}\int_{x(m)}^Tf(x)dx$
とおいて、$A(m)$を$m$の式で表すと、$A(m)$=$\boxed{\ \ (け)\ \ }$となる。また、原点をO、$\left(x(m),0\right)$を座標とする点をQとし、三角形OPQの面積を$B(m)$とおくと$\displaystyle\lim_{m \to +0}\frac{A(m)}{B(m)}$=$\boxed{\ \ (こ)\ \ }$ となる。
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第2問〜確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 袋が2つ(袋1と袋2)および赤玉2個、白玉4個が用意されている。それぞれの袋に玉が3個ずつ入った状態として、次の3つがあり得る。
状態A:袋1に入っている赤玉が0個である状態
状態B:袋1に入っている赤玉が1個である状態
状態C:袋1に入っている赤玉が2個である状態
上記の各状態に対して、次の2段階からなる操作Tを考える。
操作T:袋1から玉を1個無作為に取り出し、それを袋2に入れる。次に、袋2から玉を1個無作為に取り出し、それを袋1に入れる。
(1)X,YをそれぞれA,B,Cのいずれかとする。状態Xに対し操作Tを1回施した結果、状態Yになる確率をP(X→Y)で表す。このとき、
P(A→A)=$\boxed{\ \ (あ)\ \ }$, P(A→B)=$\boxed{\ \ (い)\ \ }$, P(B→A)=$\boxed{\ \ (う)\ \ }$,
P(B→B)=$\boxed{\ \ (え)\ \ }$, P(C→A)=$\boxed{\ \ (お)\ \ }$, P(C→B)=$\boxed{\ \ (か)\ \ }$ である。
(2)以下、$n$を自然数とし、状態Bから始めて操作Tを繰り返し施す。操作Tを$n$回施し終えたとき、状態Aである確率を$a_n$、状態Bである確率を$b_n$、状態Cである確率を$c_n$とする。$n$≧2 とするとき、$a_n$,$b_n$,$c_n$と$a_{n-1}$,$b_{n-1}$,$c_{n-1}$の間には次の関係式が成り立つ。
$\left\{\begin{array}{1}
a_n=\boxed{\ \ (あ)\ \ }a_{n-1}+\boxed{\ \ (う)\ \ }b_{n-1}+\boxed{\ \ (お)\ \ }c_{n-1}\\
b_n=\boxed{\ \ (い)\ \ }a_{n-1}+\boxed{\ \ (え)\ \ }b_{n-1}+\boxed{\ \ (か)\ \ }c_{n-1}\\
\end{array}\right.$
したがって$b_n$と$b_{n-1}$の間には次の関係式が成り立つことが分かる。
$b_n$=$\boxed{\ \ (き)\ \ }b_{n-1}$+$\boxed{\ \ (く)\ \ }$
これより、$n$≧1 に対して$b_n$を$n$の式で表すと
$b_n$=$\boxed{\ \ (け)\ \ }$+$\boxed{\ \ (こ)\ \ }(\boxed{\ \ (さ)\ \ })^n$
となる。さらに$d_n$=$\displaystyle\frac{a_n}{(\boxed{\ \ (あ)\ \ })^n}$とおくとき、$d_n$を$n$の式で表すと
$d_n$=$\boxed{\ \ (し)\ \ }\left\{(\boxed{\ \ (す)\ \ })^n-(\boxed{\ \ (せ)\ \ })^n\right\}$
となる。
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第1問(3)〜三角関数の増減とグラフと面積

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(3) 関数$y$=$\cos x\sin 2x$ $\left(0≦x≦\displaystyle\frac{\pi}{2}\right)$の最大値は$\boxed{\ \ (け)\ \ }$である。また、この関数のグラフと$x$軸で囲まれてできる図形の面積は$\boxed{\ \ (こ)\ \ }$である。
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第1問(2)〜楕円の接線とx軸y軸で作る三角形の面積の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)座標平面の第1象限の点(X,Y)において楕円$\frac{x^2}{3}$+$\frac{y^2}{2}$=1 に接する直線を$l$とすると、$l$の傾きは$\boxed{\ \ (お)\ \ }$である。また、原点をO、$l$と$x$軸, $y$軸との交点をそれぞれP, Qとすると、三角形OPQの面積は(X,Y)=($\boxed{\ \ (か)\ \ }$, $\boxed{\ \ (き)\ \ }$)のときに最小値$\boxed{\ \ (く)\ \ }$をとる。
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第1問(1)〜三角形の外心と内心の座標の求め方

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)座標平面の3点O(0,0), A(3,0), B(1, $\sqrt 3$)を頂点とする三角形OABの外心の座標は($\boxed{\ \ (あ)\ \ }$, $\boxed{\ \ (い)\ \ }$)であり、内心の座標は($\boxed{\ \ (う)\ \ }$, $\boxed{\ \ (え)\ \ }$)である。
この動画を見る 

福田の数学〜九州大学2024年文系第2問〜ベクトルの内積計算と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の原点O(0,0)、点A(2,1)を考える。点Bは第1象限にあり、|$\overrightarrow{OB}$|=$\sqrt{10}$, $\overrightarrow{OA}\bot\overrightarrow{AB}$を満たすとする。以下の問いに答えよ。
(1)点Bの座標を求めよ。
(2)$s$,$t$を正の実数とし、$\overrightarrow{OC}$=$s\overrightarrow{OA}$+$t\overrightarrow{OB}$ を満たす点Cを考える。三角形OACと三角形OBCの面積が等しく、|$\overrightarrow{OC}$|=4 が成り立つとき、$s$,$t$の値を求めよ。
この動画を見る 

福田の数学〜九州大学2024年理系第4問〜3個以上の格子点を通る直線の個数

アイキャッチ画像
単元: #数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を3以上の整数とする。座標平面上の点のうち、$x$座標と$y$座標がともに1以上$n$以下の整数であるものを考える。これら$n^2$個の点のうち3点以上を通る直線の個数を$L(n)$とする。以下の問いに答えよ。
(1)$L(3)$を求めよ。
(2)$L(4)$を求めよ。
(3)$L(5)$を求めよ。
この動画を見る 

福田の数学〜九州大学2024年理系第3問〜階乗を含む不定方程式の解

アイキャッチ画像
単元: #数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。
(1)自然数$a$, $b$が$a$<$b$を満たすとき、$\displaystyle\frac{b!}{a!}$≧$b$ が成り立つことを示せ。
(2)2・$a!$=$b!$ を満たす自然数の組($a$, $b$)を全て求めよ。
(3)$a!$+$b!$=2・$c!$ を満たす自然数の組($a$, $b$, $c$)を全て求めよ。
この動画を見る 

福田の数学〜九州大学2024年理系第2問〜複素数平面と高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 整式$f(z)$=$z^6$+$z^4$+$z^2$+1
について、以下の問いに答えよ。
(1)$f(z)$=0 を満たす全ての複素数$z$に対して、|$z$|=1 が成り立つことを示せ。
(2)次の条件を満たす複素数$w$を全て求めよ。
条件:$f(z)$=0 を満たす全ての複素数$z$に対して
$f(wz)$=0 が成り立つ。
この動画を見る 

福田の数学〜九州大学2024年理系第1問〜空間における三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$を実数とし、座標空間内の3点P(-1,1,-1), Q(1,1,1), R($a$, $a^2$, $a^3$)を考える。以下の問いに答えよ。
(1)$a$≠-1, $a$≠1 のとき、3点P,Q,Rは一直線上にないことを示せ。
(2)$a$が-1<$a$<1 の範囲を動くとき、三角形PQRの面積の最大値を求めよ。
この動画を見る 

福田の数学〜神戸大学2024年文系第2問〜さいころの目と約数に関する確率

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#神戸大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$で最小のものを求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$で最小のものを求めよ。
(3)1個のサイコロを3回投げて出た目の積が20の約数となる確率を求めよ。
この動画を見る 

福田の数学〜神戸大学2024年文系第1問〜3次関数で定義された数列

アイキャッチ画像
単元: #数列#漸化式#神戸大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$\displaystyle\frac{1}{3}x^3$-10$x$ ($x$≧0)
が最小値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$\displaystyle\frac{1}{3}x^3$-100$a_nx$ ($x$≧0)
が最小値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_{10}a_n$ で定める。以下の問いに答えよ。
(1)$a_1$と$b_1$を求めよ。 (2)$a_{n+1}$を$a_n$を用いて表せ。
(3)$b_{n+1}$を$b_n$を用いて表せ。
(4)数列$\left\{b_n\right\}$の一般項を求めよ。
(5)$\displaystyle\frac{a_1a_2a_3}{100}$ の値を求めよ。
この動画を見る 

福田の数学〜神戸大学2024年理系第5問〜定積分で表された関数と不等式

アイキャッチ画像
単元: #積分とその応用#定積分#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 0以上の実数$x$に対して、
$f(x)$=$\displaystyle\frac{1}{2}\int_{-x}^x\frac{1}{1+u^2}du$
と定める。以下の問いに答えよ。
(1)0≦$\alpha$<$\displaystyle\frac{\pi}{2}$ を満たす実数$\alpha$に対して、$f(\tan\alpha)$を求めよ。
(2)$xy$平面上で、次の連立不等式の表す領域を図示せよ。
0≦$x$≦1, 0≦$y$≦1, $f(x)$+$f(y)$≦$f(1)$
またその領域の面積を求めよ。
この動画を見る 

福田の数学〜神戸大学2024年理系第4問〜回転体の体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 1辺の長さが$\sqrt 2$の正方形ABCDを底面にもち、高さが1である直方体ABCD-EFGHを、頂点の座標がそれぞれ
A(1,0,0), B(0,1,0), C(-1,0,0), D(0,-1,0),
E(1,0,1), F(0,1,1), G(-1,0,1), H(0,-1,1)
になるように$xyz$空間におく。以下の問いに答えよ。
(1)直方体ABCD-EFGHを直線AEのまわりに1回転してできる回転体を$X_1$とし、また直線ABのまわりに1回転してできる回転体を$X_2$とする。$X_1$の体積$V_1$と$X_2$の体積$V_2$を求めよ。
(2)0≦$t$≦1 とする。平面$x$=$t$と線分EFの共有点の座標を求めよ。
(3)直方体ABCD-EFGHを$x$軸のまわりに1回転してできる回転体を$X_3$とする。
$X_3$の体積$V_3$を求めよ。
この動画を見る 
PAGE TOP