学校別大学入試過去問解説(数学) - 質問解決D.B.(データベース) - Page 48

学校別大学入試過去問解説(数学)

福田の数学〜慶應義塾大学2022年薬学部第1問(4)〜2次関数と積分の確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (4)f(x)はxの2次関数である。f(x)はx=-2で極値をとり、\int_{-3}^0f(x)dx=0\\
を満たす。またxy平面上において、f(x)のグラフy=f(x)はx軸と異なる2点で交わり、\\
y=f(x)とx軸で囲まれる部分の面積は\frac{8}{3}である。このときf(x)=\boxed{\ \ キ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜京都大学2022年理系第2問〜連続しない自然数を選ぶ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 箱の中に1からnまでの番号の付いたn枚の札がある。ただし、n \geqq 5とし、\\
同じ番号の札はないとする。この箱から3枚の札を同時に取り出し、札の番号を\\
小さい順にX,Y,Zとする。このとき、Y-X \geqq 2かつZ-Y \geqq 2となる確率を\\
求めよ。
\end{eqnarray}

2022京都大学理系過去問
この動画を見る 

大阪大2022

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.

2022阪大過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第4問〜3次関数のグラフと直線の囲む2つの部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 座標平面上の曲線\hspace{210pt}\\
C:y=x^3-x\\
を考える。\\
(1)座標平面上の全ての点Pが次の条件(\textrm{i})を満たすことを示せ。\\
(\textrm{i})点Pを通る直線lで、曲線Cと相異なる3点で交わるものが存在する。\\
(2)次の条件(\textrm{ii})を満たす点Pのとりうる範囲を座標平面上に図示せよ。\\
(\textrm{ii})点Pを通る直線lで、曲線Cと相異なる3点で交わり、かつ、直線lと\\
曲線Cで囲まれた2つの部分の面積が等しくなるものが存在する。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(3)〜部屋わけ・グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (3)3つの部屋A,B,Cがある。この3つの部屋に対して、複数の生徒が以下の\\
試行(*)を繰り返し行うことを考える。\\
(*)\left\{
\begin{array}{1}
・生徒それぞれが部屋を無作為に1つ選んで入る。\\
・生徒全員が部屋に入ったら、各部屋の生徒の人数を確認する。\\
・生徒全員が部屋を出る。\\
・1人の生徒しかいない部屋があった場合、その部屋に入った生徒は\\
次回以降の試行に参加しない。\\
\end{array}
\right.\\
\\
(\textrm{i})4人の生徒が試行(*)を1回行ったとき、2回目の試行に参加する生徒が\\
3人になる確率は\boxed{\ \ オ\ \ }である。\\
(\textrm{ii})5人の生徒が試行(*)を続けて2回行ったとき、3回目の試行に参加する\\
生徒が2人になる確率は\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(2)〜高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)a,bは実数とする。xの3次方程式x^3+(a+4)x^2-3(a+4)x+b=0\\
の実数解がx=3のみであるとき、aの値の範囲は\boxed{\ \ エ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜京都大学2022年理系第1問〜対数の値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 5.4 \lt \log_42022 \lt 5.5であることを示せ。ただし、0.301 \lt \log_{10}2 \lt 0.3011で\\
あることは用いてよい。
\end{eqnarray}

2022京都大学理系過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ Oを原点とする座標平面上で考える。座標平面上の2点S(x_1,y_1),T(x_2,y_2)\\
に対し、点Sが点Tから十分離れているとは、\\
|x_1-x_2| \geqq 1 または |y_1-y_2| \geqq 1\\
が成り立つことと定義する。\\
不等式\\
0 \leqq x \leqq 3, 0 \leqq y \leqq 3\\
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。\\
さらに、次の条件(\textrm{i}),(\textrm{ii})を共に満たす点Pをとる。\\
(\textrm{i})点Pは領域Dの点であり、かつ、放物線y=x^2上にある。\\
(\textrm{ii})点Pは、3点O,A,Bのいずれからも十分離れている。\\
点Pのx座標をaとする。\\
(1)aのとりうる値の範囲を求めよ。\\
(2)次の条件(\textrm{iii}),(\textrm{iv})をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。\\
(\textrm{iii})点Qは領域Dの点である。\\
(\textrm{iv})点Qは、4点O,A,B,Pのいずれからも十分離れている。\\
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(1)〜複素数の計算とド・モアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)整数a,bは等式(a+bi)^3=-16+16iを満たす。ただし、iは虚数単位とする。\\
(\textrm{i})a=\boxed{\ \ ア\ \ }, b=\boxed{\ \ イ\ \ }である。\\
(\textrm{ii})\frac{i}{a+bi}-\frac{1+5i}{4}を計算すると\boxed{\ \ ウ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
この動画を見る 

一橋大学2022整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^a3^b+2^c3^d=2022$を満たす$0$以上の整数$(a,b,c,d)$を求めよ.

2022一橋大過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}を次のように定める。\\
a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)\\
(1)正の整数nが3の倍数のとき、a_nは5の倍数となることを示せ。\\
(2)k,nを正の整数とする。a_nがa_kの倍数となるための必要十分条件をk,nを\\
用いて表せ。\\
(3)a_{2022}と(a_{8091})^2の最大公約数を求めよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第1問〜最小値の存在と定積分の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 次の関数f(x)を考える。\\
f(x)=(\cos x)\log(\cos x)-\cos x+\int_0^x(\cos t)\log(\cos t)dt (0 \leqq x \lt \frac{\pi}{2})\\
(1)f(x)は区間0 \leqq x \lt \frac{\pi}{2}において最小値を持つことを示せ。\\
(2)f(x)は区間0 \leqq x \lt \frac{\pi}{2}における最小値を求めよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、w=z+\frac{2}{z}\\
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、\\
境界線は含まない)に定点\alphaをとり、\alphaを通る直線lがCと交わる2点を\beta_1,\beta_2とする。\\
このとき、次の問いに答えよ。ただしiは虚数単位とする。\\
(1)w=u+vi(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。\\
(2)点\alphaを固定したままlを動かすとき、積|\beta_1-\alpha|・|\beta_2-\alpha|が最大となる\\
ようなlはどのような直線のときか調べよ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第3問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面上に3点О(0,0),A(0,4),B(8,0)がある。次の問いに答えよ。
(1) 3点A,B,Oを通る円Cの中心の座標を求めよ。
(2) 点Oを回転の中心として,円Cを反時計回りに60°回転させた円をC'とする。CとC'の共有点のうちOと異なる点の座標を求めよ。
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第3問〜約数と倍数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mは3以上の奇数とし、mの全ての正の約数をa_1,a_2,\ldots,a_kと並べる。\\
ただし、a_1 \lt a_2 \lt \ldots \lt a_kとする。\\
以下の2つの条件(\textrm{i}),(\textrm{ii})を満たすmについて考える。\\
(\textrm{i})mは素数ではない。\\
(\textrm{ii})i \leqq j,1 \lt i \lt k ,1 \lt j \lt kを満たす全ての整数i,jについてa_j-a_i \leqq 3が\\
成り立つ。\\
このとき、次の問いに答えよ。\\
(1)kは3または4であることを示し、mをa_2を用いて表せ。\\
(2)k=3となるとき、全ての正の整数nについて(a_2n+1)^{a_2}-1は\\
mの倍数であることを示せ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第2問〜微分可能性と最大値と体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 実数aは正の定数とする。実数全体で定義された関数f(x)=\frac{|x+a|}{\sqrt{x^2+1}}について、\\
\\
次の問いに答えよ。\\
(1)f(x)がx=-aで微分可能であるかどうか調べよ。\\
(2)f(x)の最大値が\sqrt2となるように、定数aの値を定めよ。\\
(3)定数aは(2)で定めた値とする。y=f(x)のグラフとx軸およびy軸で囲まれた部分\\
をx軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 袋Aには白玉2個、赤玉1個、袋Bには白玉1個、赤玉2個が入っている。\\
この状態から始めて、次の操作を繰り返し行う。\\
操作\\
① 袋A、袋Bから玉を1個ずつ取り出す。\\
② (\textrm{i})取り出した2個の玉の色が同じである場合は、取り出した玉を2個とも\\
袋Aに入れる。\\
(\textrm{ii})取り出した2個の玉の色が異なる場合は、袋Aから取り出した玉は袋B\\
に入れ、袋Bから取り出した玉は袋Aに入れる。\\
このとき、\\
・操作を2回繰り返した後に袋Aに入っている赤玉の個数が1個である確率は\boxed{\ \ (ア)\ \ }\\
・操作を3回繰り返した後に袋Aに入っている赤玉の個数が0個である確率は\boxed{\ \ (イ)\ \ }\\
である。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 

【数学】横浜国立大2018年度(理系前期)第5問の解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)2018年度前期入試
第5問
xy平面上に双曲線$C1:y=\dfrac{1}{x}$がある。C1上の点P$(t,\dfrac{1}{t})$(ただし$t>0$)におけるC1の接線をlとする。
放物線$C2:y=x^2+ax+b$(a,bは実数)は点Pを通りC1と第3象限において共有点をただ一つ持つ。C2とlで囲まれた部分の面積をSとする。
(1) lの方程式を求めよ。
(2) a,bをそれぞれtの式で表せ。
(3) Sをtの式で表せ。
(4) tが正の実数全体を動くとき、Sの最小値を求めよ。
この動画を見る 

【数学】横浜国立大2018年度(理系前期)第1問の解説

アイキャッチ画像
単元: #学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)2018年度前期入試
第1問
(1) 定積分$\displaystyle \int_{0}^{\frac{\pi}{3}}\dfrac{x}{\cos(x)^2} dx$を求めよ。
(2) $\dfrac{-\pi}{2}\lt x\lt \dfrac{\pi}{2}$で定義された関数f(x)が
   $f(x)\cos(x)^2 =\pi-\dfrac{x}{\log2}\displaystyle \int_{0}^{\frac{\pi}{3}f(t)dt$
をみたすとき、f(x)を求めよ。
この動画を見る 

3次方程式の解の公式 順天堂大(医)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$ x^3+9x+6=0$
*誘導あり
解には$ \omega^3=1$の$\omega$を用いる$(\omega\neq 1)$

順天堂大(医)過去問
この動画を見る 

2022東海大(医)ドモアブルの定理の基本

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\sqrt{2+\sqrt2}+\sqrt{2-\sqrt2i})^8$を解け.

2022東海大(医)過去問
この動画を見る 

2022東海大(医)ドモアブルの定理の基本

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ (\sqrt{2+\sqrt2}+\sqrt{2-\sqrt2i})^8$
これを解け.

2022東海大(医)過去問
この動画を見る 

結局2021年東大理系第1問はどう解くのがよかったのか?~東京大学入試問題研究〜福田の数学

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
東京大学2021年理系大問1\\
\\
C:s^2+ax+bは放物線y=x^2と2つの共有点を持ち、一方の共有点のx座標は\\
-1 \lt x \lt 0を満たし、他方の共有点のx座標は0 \lt x \lt 1を満たす。\\
(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。\\
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 

東京大学 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
n,a,b,c,dは0または正の整数
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2 = n^2 -6 \\
a+b+c+d = n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}
$
を満たす(n,a,b,c,d)数の組を全て求めよ

1980年代東京大学
この動画を見る 

2022久留米大(医)約数の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2\lt n \gt ^2-9\lt n \gt-7・\lt 81 \gt=0$
を満たす3桁の自然数nを求めよ

2022年久留米大学医学部過去問
この動画を見る 

順天堂(医)確率 基本

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
ある1つの箱から とり出して戻すを3回行ったら
●●○となった
箱がAである確率を求めよ

2022年順天堂医学大学 過去問
この動画を見る 

知ってれば一瞬!! 名城大学附属2022入試問題解説31問目

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照

2022名城大学附属高等学校
この動画を見る 

篠原京大塾:2021年(文系数学)過去問解説【篠原好】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2021年(文系数学)過去問解説
この動画を見る 

2022藤田医科大 等差数列の超基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
公差が0でない整数の等差数列$a_n$がある
$\sum_{ }^{ } a_n$はn=7で
最大値119 $a_n$を求めよ。

藤田医学科大学
この動画を見る 

2022関西医科 超基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x=\displaystyle \frac{6x^2+17x+10}{3x-2}$
(1)$f(x) \gt 0$を解け
(2)$f(n)$の値が自然数となる整数$n$
を求めよ。
2022年 関西医科過去問
この動画を見る 
PAGE TOP