学校別大学入試過去問解説(数学) - 質問解決D.B.(データベース) - Page 83

学校別大学入試過去問解説(数学)

【理数個別の過去問解説】1978年度東京工業大学 数学 第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cは1<a<b<cをみたす整数とし,(ab-1)(bc-1)(ca-1)はabcで割り切れるとする。このとき次の問に答えよう。
(1)ab+bc+ca-1はabcで割り切れることを示そう。
(2)a,b,cをすべて求めよう。
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第3問〜整式の割り算の余りと整数の余りの割り算の関係

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} kを3以上の整数とする。k進法で2021_{k}と表される整数Nを考える。次の問いに答えよ。\\
(1)Nがk-1で割り切れるときのkの値を求めよ。\\
\\
(2)Nをk+1で割ったときの余りをkで表せ。\\
\\
(3)Nをk+2で割ったときの余りが1となるkを全て求めよ。
\end{eqnarray}

2021早稲田大学社会科学部過去問
この動画を見る 

【理数個別の過去問解説】1968年度東京工業大学 数学 第1問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
不等式$ab+1≦abc≦bc+ca+ab+1$をみたす自然数a,b,cのすべての組を求めよう。ただ し、a>b>cとする。
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第2問〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} \triangle OABにおいて、辺OAを1:1に内分する点をD、辺OBを2:1に内分する点\\
をEとする。線分BDと線分AEの交点をF、\overrightarrow{ OA }=\overrightarrow{ a },\ \overrightarrow{ OB }=\overrightarrow{ b },\ |\overrightarrow{ a }|=a,\ |\overrightarrow{ b }|=b\\
として、次の問いに答えよ。\\
(1)\overrightarrow{ OF }を\overrightarrow{ a },\ \overrightarrow{ b }を用いて表せ。\\
さらに、\overrightarrow{ a }・\overrightarrow{ OF }=\overrightarrow{ b }・\overrightarrow{ OF } として、以下の問いに答えよ。\\
(2)内積\overrightarrow{ a }・\overrightarrow{ b }をa,\ bを用いて表せ。\\
(3)b=1のとき、aの取りうる値の範囲を求めよ。\\
(4)b=1のとき、\triangle OABの面積Sの最大値と、そのときのaの値を求めよ。
\end{eqnarray}

2021早稲田大学社会科学部過去問
この動画を見る 

円の中に円。巣鴨 図形

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AB=10
斜線部の面積=?
*図は動画内参照

巣鴨高等学校
この動画を見る 

数学「大学入試良問集」【13−8 数学的帰納法(不等式の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$が自然数のとき、次の各問いに答えよ。
(1)不等式$n! \geqq 2^{n-1}$が成り立つことを証明せよ。
(2)不等式$1+\displaystyle \frac{1}{1!}+\displaystyle \frac{1}{2!}+・・・+\displaystyle \frac{1}{n!} \lt 3$が成り立つことを証明せよ。
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#三角関数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} a,bを定数とし、関数f(x)=x^2+ax+b とする。方程式f(x)=0の2つの解\alpha,\beta\\
が次式で与えられている。\\
\alpha=\frac{\sin\theta}{1+\cos\theta}, \beta=\frac{\sin\theta}{1-\cos\theta}\\
ここで\thetaは、0 \lt \theta \lt \piの定数である。次の問いに答えよ。\\
(1)a,bを\thetaを用いて表せ。\\
(2)\thetaが0 \lt \theta \piで変化するとき、放物線y=f(x)の頂点の軌跡を求めよ。\\
(3)\int_0^{2\sin\theta}f(x)dx=0 となる\thetaの値を全て求めよ。
\end{eqnarray}

2021早稲田大学社会科学部過去問
この動画を見る 

数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
この動画を見る 

【理数個別の過去問解説】1976年度東京工業大学 数学 第1問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第4問〜三角形の個数を数える

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 1辺の長さが1の正三角形を下図(※動画参照)のように積んでいく。図の中には大きさの\\異なったいくつかの正三角形が含まれているが、底辺が下側にあるものを「上向きの正三角形」、\\
底辺が上側にあるものを「下向きを正三角形」とよぶことにする。例えば、\\
この図(※動画参照)は1辺の長さが1の正三角形を4段積んだものであり、1辺の長さ\\
が1の上向きの正三角形は10個あり、1辺の長さが2の上向き正三角形は6個ある。\\
また1辺の長さが1の下向きの正三角形は6個ある。上向きの正三角形の総数は\\
20であり、下向きの正三角形の総数は7である。こうした正三角形の個数に関して\\
次の問いに答えよ。\\
(1)1辺の長さが1の正三角形を5段積んだとき、上向きと下向きとを合わせた\\
正三角形の総数を求めよ。\\
(2)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、上向きの正三角形\\
の総数を求めよ。\\
(3)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、下向きの正三角形\\
の総数を求めよ。
\end{eqnarray}
この動画を見る 

【数A】整数の性質:慶應義塾大学 1の位の数は?

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一の位の数(合同式の利用):十進法の表記法で考えよう。
(1)$2^{100}$の一の位の数 字を求めよう。
(2)$3^{1000}$の一の位の数字を求めよう。
(3)$a=3^{33}$とするとき、$3^a$ の一の位の数字を求めよう。
この動画を見る 

数学「大学入試良問集」【13−6 連立漸化式】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件によって定められる数列$\{x_n\},\{y_n\}$を考える。
$x_1=1,y_1=5$ $x_{n+1}=x_n+y_n$ $y_{n+1}=5x_n+y_n(n=1,2,・・・)$

次の問いに答えよ。
(1)
$a_n=x_n+cy_n$とおいたとき、数列$\{a_n\}$が等比数列となるように定数$c$の値を定め、$a_n$を$n$の式で表せ。

(2)
$x_n$および$y_n$を$n$の式で表せ。
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第3問〜グラフの通過範囲とx固定法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 実数aが0 \leqq a \leqq 1を満たしながら動くとき、座標平面において3次関数\\
y=x^3-2ax+a^2 (0 \leqq x \leqq 1)のグラフが通過する領域をAとする。このとき、\\
次の問いに答えよ。\\
(1)直線x=\frac{1}{2}とAの共通部分に属する点のy座標の取り得る範囲を求めよ。\\
(2)Aに属する点のy座標の最小値を求めよ。\\
(3)Aの面積を求めよ。
\end{eqnarray}

2021早稲田大学教育学部過去問
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第2問〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 点Oを中心とする半径1の円の周上に相異なる3点A,B,Cがあり、実数b,c\\
に対して\\
\overrightarrow{ OA }+b\ \overrightarrow{ OB }+c\ \overrightarrow{ OC }=\overrightarrow{ 0 }\\
の関係を満たしている。このとき、次の問いに答えよ。\\
(1)\angle BAO=\beta,\ \angle CAO=\gammaとするとき、bとcの値を求めよ。\\
(2)\triangle ABCの垂心をHとする。b=cのとき、\overrightarrow{ OH }を\overrightarrow{ OA }およびbを用いて表せ。
\end{eqnarray}

2021早稲田大学教育学部過去問
この動画を見る 

佐賀大(医)3次方程式の解の公式その2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+px-q=0$
$\alpha-\beta=q,\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は解である.
$\sqrt[3]{1+\sqrt{\dfrac{28}{27}}}-\sqrt[3]{-1+\sqrt{\dfrac{28}{27}}}$の値を求めよ.

佐賀大(医)過去問
この動画を見る 

数学「大学入試良問集」【13−5② 漸化式(デザイン型】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1=2a_n-2a_n-2n+1(n=1,2,・・・)}$によって定められる数列$\{a_n\}$について、次の問いに答えよ。

(1)
$b_n=a_n-(\alpha+\beta)$とおいて、数列$\{b_n\}$が等比数列になるように定数$\alpha,\beta$の値を定めよ。

(2)
一般項$a_n$を求めよ。

(3)
初項から第$n$項までの和$S_n=\displaystyle \sum_{k=1}^n a_k$を求めよ。
この動画を見る 

【理数個別の過去問解説】2015年度京都大学 数学 文系第3問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
6個の点A,B,C,D,E,Fが右図のように長さ1の線分で結ばれているとする。
各線分 をそれぞれ独立に確率1/2で赤または黒で塗る。
赤く塗られた線分だけを通って 点Aから点Eにいたる経路がある場合はそのうちで最短のものの長さをXとする。 そのような経路がない場合はX=0とする。
このとき、n=0,2,4について、X=nとな る確率を求めよう。
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第1問(4)〜箱に玉を入れる場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)箱が6個あり、1から6までの番号がついている。赤、黄、青それぞれ2個ずつ\\
合計6個の玉があり、ひとつの箱にひとつずつ玉を入れるとする。ただし、隣り合う\\
番号の箱には異なる色の玉が入るようにする。このような入れ方は全部で何通りある\\
かを求めよ。
\end{eqnarray}

2021早稲田大学教育学部過去問
この動画を見る 

【理数個別の過去問解説】2007年度京都大学 数学 理系第1問(2)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
得点1,2,...,nが等しい確率で得られるゲームを独立に3回繰り返す。
このとき、 2回目の得点が1回目の得点以上であり、さらに3回目の特典が2回目の得点以上となる確率を求めよう。
この動画を見る 

数学「大学入試良問集」【13−5 漸化式(割り算型)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$は
$a_1=9,a_{n+1}=4a_n+5^n(n=1,2,・・・)$をみたす。このとき、次の問いに答えよ。

(1)$b_n=a_n-5^n$とおく。$b_{n+1}$を$b_n$で表せ。
(2)数列$\{a_n\}$の一般項を求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第1問(3)〜2曲線の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)座標平面上の2つの曲線$y=ae^x$と$y=-x^2+2x$が共有点をもち、かつ、その
共有点において共通の接線をもつような正の定数$a$の値を求めよ。

2021早稲田大学教育学部過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(4)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(4)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B={}_a\mathrm{C}_b$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。${}_{4a+1}\mathrm{C}_{4b+1}wp4$で割った余りは${}_a\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
この動画を見る 

数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。

(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第1問(2)〜ねじれの位置にある線分の回転

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (2)座標空間に$2$点$A(0,-1,1)$と$B(-1,0,0)$をとる。線分$AB$を$z$軸の周りに
1回転してできる面と2つの平面$z=0,z=1$とで囲まれた部分の体積を求めよ。

2021早稲田大学教育学部過去問
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第1問〜高次方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)方程式$x^4+5x^3-3x^2+4x+2=0$ は複素数$\displaystyle \frac{1+\sqrt3i}{2}$を解に持つ。
この方程式の実数解を全て求めよ。

2021早稲田大学教育学部過去問
この動画を見る 

数学「大学入試良問集」【13−3 等差×等比の和】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
年齢1の1つの個体から始めて、以下の操作1,2を$n$回おこなった後の全個体の年齢数の合計を$S_n$とする。
操作1.
 年齢1の各個体から年齢0の$k$個の個体を発生される。
 ただし、$k \gt 1$とする。

操作2.
 全個体の年齢をそれぞれ1増やす。

次の問いに答えよ。
(1)
$k=2$のとき$S_4$を求めよ。

(2)
操作1,2を$n$回おこなった後の平均年齢を$A_n$とするとき、$A_n \lt \displaystyle \frac{k}{k-1}$となることを示せ。
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第5問〜正四面体と球の位置関係

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 正四面体$OABC$に対し、三角形$ABC$の外心を$M$とし、$M$を中心として点$A,B,C$
を通る球面を$S$とする。また、$S$と辺$OA,OB,OC$との交点のうち、$A,B,C$とは異なる
ものをそれぞれ$D,E,F$とする。さらに、$S$と三角形$OAB$の共通部分として得られる
弧$DE$を考え、その弧を含む円周の中心をGとする。$\overrightarrow{ a }=\overrightarrow{ OA },\ \overrightarrow{ b }=\overrightarrow{ OB },\ \overrightarrow{ c }=\overrightarrow{ OC }$
として、以下の問いに答えよ。
(1)$\overrightarrow{ OD },\ \overrightarrow{ OE },\ \overrightarrow{ OF },\ \overrightarrow{ OG }を\overrightarrow{ a },\ \overrightarrow{ b },\ \overrightarrow{ c }$を用いて表せ。

(2)三角形$OAB$の面積を$S_1$、四角形$ODGE$の面積を$S_2$とするとき、$S_1:S_2$を
できるだけ簡単な整数比により表せ。
この動画を見る 

数学「大学入試良問集」【13−2 部分分数分解による和】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$2,6,12,20,30,42,・・・$について、$n$を自然数として以下の問いに答えよ。
(1)
第$n$項$a_n$と、初項から第$n$項までの和$S_n$を求めよ。

(2)
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。

(3)
$\displaystyle \frac{1}{S_1}+\displaystyle \frac{1}{S_2}+\displaystyle \frac{1}{S_3}+・・・+\displaystyle \frac{1}{S_n}$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第4問〜場合の数と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ $n,k$を$2$以上の自然数とする。$n$個の箱の中に$k$個の玉を無作為に入れ、各箱に入った玉の
個数を数える。その最大値と最小値の差がlとなる確率を$P_l(0 \leqq l \leqq k)$とする。
(1)$n=2,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

(2)$n \geqq 2,$ $k=2$のとき、$P_0,P_1,P_2$を求めよ。

(3)$n \geqq 3,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

数学「大学入試良問集」【13−1 Snとanの取り扱い】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#明星大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする。
$S_n=-2a_n+3n$が成り立つとき、次の問いに答えよ。
(1)$a_1$と$a_2$を求めよ。
(2)$a_{n+1}$を$a_n$を用いて表せ。
(3)$a_n$を$n$を用いて表せ。
この動画を見る 
PAGE TOP