千葉大学

数学「大学入試良問集」【16−2 複素数平面と三角形の形との関係】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複素数平面上に三角形$ABC$があり、その頂点$A,B,C$を表す複素数をそれぞれ$z_1,z_2,z_3$とする。
複素数$\omega$に対して、$z_1=\omega z_3,z_2=\omega z_1,z_3=\omega z_2$が成り立つとき、次の各問いに答えよ。
(1)$1+\omega+\omega^2$の値を求めよ。
(2)三角形$ABC$はどんな形の三角形か。
(3)$z=z_1+2z_2+3z_3$の表す点を$D$とすると、三角形$OBD$はどんな形の三角形か。ただし、$O$は原点である。
この動画を見る
複素数平面上に三角形$ABC$があり、その頂点$A,B,C$を表す複素数をそれぞれ$z_1,z_2,z_3$とする。
複素数$\omega$に対して、$z_1=\omega z_3,z_2=\omega z_1,z_3=\omega z_2$が成り立つとき、次の各問いに答えよ。
(1)$1+\omega+\omega^2$の値を求めよ。
(2)三角形$ABC$はどんな形の三角形か。
(3)$z=z_1+2z_2+3z_3$の表す点を$D$とすると、三角形$OBD$はどんな形の三角形か。ただし、$O$は原点である。
数学「大学入試良問集」【7−1 二次関数の最大最小】を宇宙一わかりやすく

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を正の実数とする。
2次関数$f(x)=ax^2-2(a+1)x+1$に対して、次の問いに答えよ。
(1)関数$y=f(x)$のグラフの頂点の座標を求めよ。
(2)$0 \leqq x \leqq 2$の範囲で$y=f(x)$の最大値と最小値を求めよ。
この動画を見る
$a$を正の実数とする。
2次関数$f(x)=ax^2-2(a+1)x+1$に対して、次の問いに答えよ。
(1)関数$y=f(x)$のグラフの頂点の座標を求めよ。
(2)$0 \leqq x \leqq 2$の範囲で$y=f(x)$の最大値と最小値を求めよ。
数学「大学入試良問集」【6−6 外接球と四面体】を宇宙一わかりやすく

単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$AB=5,BC=7,CA=8$および$OA=OB=OC=t$を満たす四面体$OABC$がある。
(1)$\angle BAC$を求めよ。
(2)$\triangle ABC$の外接円の半径を求めよ。
(3)4つの頂点$O,A,B,C$が同一球面上にあるとき、その球の半径が最小となるような実数$t$の値を求めよ。
この動画を見る
$AB=5,BC=7,CA=8$および$OA=OB=OC=t$を満たす四面体$OABC$がある。
(1)$\angle BAC$を求めよ。
(2)$\triangle ABC$の外接円の半径を求めよ。
(3)4つの頂点$O,A,B,C$が同一球面上にあるとき、その球の半径が最小となるような実数$t$の値を求めよ。
【理数個別の過去問解説】2007年度千葉大学 数学 第2問解説

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
nは奇数とする。このとき、次のことを証明せよ。
(1)n²-1は8の倍数である。
(2)n⁵-nは3の倍数である。
(3)n⁵-nは120の倍数である。
千葉大学(文理共通)2007年第2問より
この動画を見る
nは奇数とする。このとき、次のことを証明せよ。
(1)n²-1は8の倍数である。
(2)n⁵-nは3の倍数である。
(3)n⁵-nは120の倍数である。
千葉大学(文理共通)2007年第2問より
千葉大 三次関数と円 東大数学科卒の杉山さん

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#円と方程式#指数関数#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
曲線$y=x^3-x$と円$(x-a^2)+(y-a)^2=2a^2$の共有点が2つ
共有点の$x$座標は?
$(a \gt 0)$
出典:千葉大学 過去問
この動画を見る
曲線$y=x^3-x$と円$(x-a^2)+(y-a)^2=2a^2$の共有点が2つ
共有点の$x$座標は?
$(a \gt 0)$
出典:千葉大学 過去問
千葉大 漸化式 良問再投稿

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$
以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2
出典:2013年千葉大学 過去問
この動画を見る
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$
以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2
出典:2013年千葉大学 過去問
千葉大 素数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は2以上の自然数
(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ
(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ
出典:2007年千葉大学 過去問
この動画を見る
$a,b$は2以上の自然数
(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ
(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ
出典:2007年千葉大学 過去問
千葉大 複素数 極形式 7乗根

単元:
#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#千葉大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$
(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$
(1)(2)それぞれ値を求めよ
出典:千葉大学 過去問
この動画を見る
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$
(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$
(1)(2)それぞれ値を求めよ
出典:千葉大学 過去問
千葉大(医)整数問題 良問再投稿

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①
$3^n=k^3+1$
②
$3^n=k^2-40$
$k,n$自然数
出典:千葉大学大学院医学研究院・医学部 過去問
この動画を見る
①
$3^n=k^3+1$
②
$3^n=k^2-40$
$k,n$自然数
出典:千葉大学大学院医学研究院・医学部 過去問
千葉大 放物線と法線

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$C:y=\displaystyle \frac{1}{2}x^2$
点$(a,b)$を通る$C$の法線が3本引ける$a,b$の必要十分条件は?
出典:2010年千葉大学 過去問
この動画を見る
$C:y=\displaystyle \frac{1}{2}x^2$
点$(a,b)$を通る$C$の法線が3本引ける$a,b$の必要十分条件は?
出典:2010年千葉大学 過去問
千葉大 整式

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数
$a \neq b,c \neq d$
自然数$p,q$が存在することを示せ
出典:2004年千葉大学 過去問
この動画を見る
$a,b,c,d$は自然数
$a \neq b,c \neq d$
自然数$p,q$が存在することを示せ
出典:2004年千葉大学 過去問
千葉大 漸化式 証明

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数
(1)
$a_{n}$は整数
(2)
$a_{n}$を3で割ると余りは2である
出典:2013年千葉大学 過去問
この動画を見る
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数
(1)
$a_{n}$は整数
(2)
$a_{n}$を3で割ると余りは2である
出典:2013年千葉大学 過去問
千葉大 整数問題 高校数学 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
下記証明せよ
(1)
$2x^2-y^2=9$を満たす整数$x,y$は3の倍数である
(2)
$21x^2-10y^2=9$を満たす整数$x,y$は存在しない
出典:千葉大学 過去問
この動画を見る
下記証明せよ
(1)
$2x^2-y^2=9$を満たす整数$x,y$は3の倍数である
(2)
$21x^2-10y^2=9$を満たす整数$x,y$は存在しない
出典:千葉大学 過去問
千葉大 二重絶対値記号のついた二次方程式の解の個数 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
$|x^2-6x-|x-6||+x=a$
実数解の個数(a実数)
この動画を見る
千葉大学過去問題
$|x^2-6x-|x-6||+x=a$
実数解の個数(a実数)
千葉大 漸化式 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
90千葉大学過去問題
$a_1=1$
$3(a_1+a_2+\cdots +a_n)=(n+2)a_n$
(1)一般項$a_n$を求めよ。
(2)$\displaystyle\sum_{k=1}^n \frac{1}{a_k}$
この動画を見る
90千葉大学過去問題
$a_1=1$
$3(a_1+a_2+\cdots +a_n)=(n+2)a_n$
(1)一般項$a_n$を求めよ。
(2)$\displaystyle\sum_{k=1}^n \frac{1}{a_k}$
千葉大(医)訂正版 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2013千葉大学過去問題
$m^4+14m^2$が$2m+1$の整数倍となるような整数mを全て
この動画を見る
2013千葉大学過去問題
$m^4+14m^2$が$2m+1$の整数倍となるような整数mを全て
千葉大(医)訂正版をご覧ください。別解をコメントしてくださった方がいるので、公開はします。Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2013千葉大学過去問題
$m^4+14m^2$が$2m+1$の整数倍となるような整数mを全て求めよ.
この動画を見る
2013千葉大学過去問題
$m^4+14m^2$が$2m+1$の整数倍となるような整数mを全て求めよ.
千葉大 整数 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
$8n^3+40n$が$2n+1$で割り切れるような自然数nをすべて求めよ。
この動画を見る
千葉大学過去問題
$8n^3+40n$が$2n+1$で割り切れるような自然数nをすべて求めよ。
千葉大 三次関数と放物線 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
a実数、2つの曲線
$y=x^3+2ax^2-3a^2x-4$
$y=ax^2-2a^2x-3a$
はある共有点で両方に共通な接線をもつ。aを求めよ
この動画を見る
千葉大学過去問題
a実数、2つの曲線
$y=x^3+2ax^2-3a^2x-4$
$y=ax^2-2a^2x-3a$
はある共有点で両方に共通な接線をもつ。aを求めよ
千葉大 三次関数 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
$f(x)=x^3,g(x)=ax^2+bx+c \quad (a \neq 0) $
f(x)とg(x)のグラフが点$(\frac{1}{2},\frac{1}{8})$で共通の接線をもつ。
(1)b,cをaを用いて表せ。
(2)f(x)-g(x)の$0 \leqq x \leqq 1$における最小値をaを用いて表せ。
この動画を見る
千葉大学過去問題
$f(x)=x^3,g(x)=ax^2+bx+c \quad (a \neq 0) $
f(x)とg(x)のグラフが点$(\frac{1}{2},\frac{1}{8})$で共通の接線をもつ。
(1)b,cをaを用いて表せ。
(2)f(x)-g(x)の$0 \leqq x \leqq 1$における最小値をaを用いて表せ。
千葉大 埼玉大 整式の剰余 三乗根 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#埼玉大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
$x^4+ax^3+ax^2+bx-6$が$x^2-2x+1$で割り切れるとき、a,bの値
埼玉大学過去問題
$\frac{1}{2-{}^3\sqrt7}=P+q{}^3\sqrt7+r^3\sqrt{49}$が成り立つ整数p,q,rの例をあげよ。
${}^3\sqrt7$と${}^3\sqrt9$ではどちらが2に近いか。
この動画を見る
千葉大学過去問題
$x^4+ax^3+ax^2+bx-6$が$x^2-2x+1$で割り切れるとき、a,bの値
埼玉大学過去問題
$\frac{1}{2-{}^3\sqrt7}=P+q{}^3\sqrt7+r^3\sqrt{49}$が成り立つ整数p,q,rの例をあげよ。
${}^3\sqrt7$と${}^3\sqrt9$ではどちらが2に近いか。
千葉大 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
Pを素数、nを2以上の自然数
$x^n-P^nx-P^{n+1}=0$は整数解をもたないことを証明せよ。
この動画を見る
千葉大学過去問題
Pを素数、nを2以上の自然数
$x^n-P^nx-P^{n+1}=0$は整数解をもたないことを証明せよ。
千葉大 素数 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
n,Nは自然数
(1)5以上の素数は6n+1の形で表されることを示せ。
(2)6N-1は、6n-1の形で表される素数を約数にもつことを示せ。
(3)6n-1の形で表される素数は無限にあることを示せ。
この動画を見る
千葉大学過去問題
n,Nは自然数
(1)5以上の素数は6n+1の形で表されることを示せ。
(2)6N-1は、6n-1の形で表される素数を約数にもつことを示せ。
(3)6n-1の形で表される素数は無限にあることを示せ。
千葉大 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2004千葉大学過去問題
x,y自然数、pは素数
$p^2=x^3+y^3$となる
(p,x,y)をすべて求めよ。
この動画を見る
2004千葉大学過去問題
x,y自然数、pは素数
$p^2=x^3+y^3$となる
(p,x,y)をすべて求めよ。
千葉大 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
30!について
(1)$2^k$で割ったとき商が整数となる最大のkの値
(2)末尾に0がいくつ並ぶか
(3)1の位から左に見ていき最初にあらわれる0以外の数は何か
この動画を見る
千葉大学過去問題
30!について
(1)$2^k$で割ったとき商が整数となる最大のkの値
(2)末尾に0がいくつ並ぶか
(3)1の位から左に見ていき最初にあらわれる0以外の数は何か
千葉大学 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2003千葉大学過去問題
x,y,z,nは自然数
$x^2=7^{2n}(y^2+10z^2)$が成り立っている
(1)平方数を3で割った余りは0か1を示せ
(2)yzは3の倍数であることを示せ。
(3)y,zが共に素数のときxをnを用いて表せ。
この動画を見る
2003千葉大学過去問題
x,y,z,nは自然数
$x^2=7^{2n}(y^2+10z^2)$が成り立っている
(1)平方数を3で割った余りは0か1を示せ
(2)yzは3の倍数であることを示せ。
(3)y,zが共に素数のときxをnを用いて表せ。
千葉大学、弘前大学 整数問題 メルセンヌ素数 高校数学 Japanese university entrance exam questions

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$n^5-n$は30の倍数であることを示せ。
千葉大学過去問題
$2^n-1$が素数ならnは素数であることを示せ。
この動画を見る
弘前大学過去問題
$n^5-n$は30の倍数であることを示せ。
千葉大学過去問題
$2^n-1$が素数ならnは素数であることを示せ。
千葉大(医)整数問題 高校数学 Japanese university entrance exam questions

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2010千葉大学過去問題
k,n自然数
(1)$3^n=k^3+1$
(2)$3^n= k^2-40$
この動画を見る
2010千葉大学過去問題
k,n自然数
(1)$3^n=k^3+1$
(2)$3^n= k^2-40$