大学入試過去問(数学) - 質問解決D.B.(データベース) - Page 8

大学入試過去問(数学)

#上智大学(2005) #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=x^2+x+2\displaystyle \int_{0}^{1} f(t) dt$を満たす関数$f(x)$を求めよ

出典:2005年上智大学
この動画を見る 

#福島大学(2020) #不定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int 2\ x\ log|x+1|dx$

出典:2020年福島大学
この動画を見る 

大学入試問題#829「綺麗な詰将棋!」 #筑波大学(2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-1}{x^3+1} dx$

出典:2016年筑波大学
この動画を見る 

#立教大学(2010) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{2x^3}{1+x^2} dx$

出典:2010年立教大学
この動画を見る 

#岩手大学(2019) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3} \displaystyle \frac{x}{(4-x)^3} dx$

出典:2019年岩手大学
この動画を見る 

大学入試問題#828「式変形難しめの良問!」 #久留米大学医学部(2024) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n \displaystyle \frac{3k+5}{(3k-1)(3k+2)2^{k+1}}$

出典:2024年久留米大学医学部
この動画を見る 

#東京都市大学(2010) #不定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int xe^{x^2} dx$

出典:2010年東京都市大学
この動画を見る 

#岩手大学(2019) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{3x^2-1}{2x+1}\sin\displaystyle \frac{2}{x}$

出典:2019年岩手大学
この動画を見る 

大学入試問題#827「とりま絶対値はずそ:0≦t≦π/2」 #筑波大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-\sin\ t\ |\ dx$

出典:2020年筑波大学
この動画を見る 

#岩手大学(2018) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} x^3log\ x\ dx$

出典:2018年岩手大学
この動画を見る 

#筑波大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3x\ dx$

出典:2016年筑波大学
この動画を見る 

大学入試問題#826「尺の関係で、解法2つ紹介!」 #筑波大学(2019) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \displaystyle \frac{1}{\tan^2x} dx$

出典:2019年筑波大学
この動画を見る 

#上智大学(2014) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ u \to \infty } \displaystyle \int_{o}^{u} te^{-t} \ dt$

出典:2014年上智大学
この動画を見る 

#筑波大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{2}}^{2} |log\ x| dx$

出典:2016年筑波大学
この動画を見る 

大学入試問題#825「まあまあ良問」 #茨城大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-7}^{1}(2-x) \sqrt[ 3 ]{ 1-x }\ dx$

出典:2022年茨城大学
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(4)〜領域と集合の要素の個数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (4)$xy$平面上で、不等式$x$≦5 の表す領域を$A$, 不等式$x$+$y$≧10 の表す領域を$B$とする。また、$xy$平面上の点の集合$S$は以下の3つの条件をすべて満たす。
(条件1)$S$に含まれるどの点も、その$x$座標と$y$座標はともに1以上10以下の自然数である。
(条件2)$S$の要素で領域$A$に含まれるものは、領域$B$に含まれる。
(条件3)$S$の要素で領域$B$に含まれるものは、領域$A$に含まれる。
$S$を、条件1~3を満たす中で要素の個数が最大のものとするとき、その要素の個数は$\boxed{シス}$である。
この動画を見る 

#秋田大学(2019) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#秋田大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2} \displaystyle \frac{1}{x\ log\ x} dx$

出典:2019年秋田大学
この動画を見る 

#岩手大学(2013) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sqrt{ 3x+4 }-2}{\sin3x}$

出典:2013年岩手大学
この動画を見る 

福田のおもしろ数学143〜斜面の勾配

アイキャッチ画像
単元: #数学(中学生)#中3数学#大学入試過去問(数学)#三平方の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
傾いた平面上で、もっとも急な方向の勾配(傾き)が$\frac{1}{3}$であるという。いま南北方向の勾配を測ったところ$\frac{1}{5}$であった。
東西方向の勾配はどれだけか。
この動画を見る 

大学入試問題#824「たぶん良問」 #筑波大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2-2x-2}{x^3-1} dx$

出典:2022年筑波大学
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(3)〜最小公倍数の変化と個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (3)1から$n$までの$n$個の自然数の最小公倍数を$a_n$とする。
・$a_n$=$a_{n+1}$を満たす最小の自然数$n$は$\boxed{ケ}$である。
・$a_{n+1}$=$2a_n$を満たす10000以下の自然数$n$は$\boxed{コサ}$個ある。
この動画を見る 

2024年度第1回K塾記述模試数学Ⅲ型全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【1】
(1) 不等式$2| x-2|-x≦$4を解け。
(2) 関数$f(x)=\log_{ 2 } (x-1)+2\log_{ 4 } (3-2x)$の最大値を求めよ。
(3) 曲線$y=x^3+2x^2$とx軸によって囲まれた部分の面積を求めよ。
(4) $\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{4k^2-1}$をnを用いて表せ。
(5) $OA=2,OB=3,∠AOB=60°$である三角形$OAB$において辺$AB$を$1:3$に内分する点を$C$とする。
(ⅰ) $OC$を$OA,OB$を用いて表せ。
(ⅱ) $|OC|$を求めよ。


【2】
1個のサイコロを繰り返し振る。$k$回目($k=1,2,3,…$)に奇数の目が出たら、その目の数を$x_k$とし、偶数の目が出たら、その目の数を2で割った商を$x_k$とする。 $S_n=x_1+x_2+x_3+…+x_n$ ($n=1,2,3,…$) と定める。
(1) $S_1=3$ である確率、$S_2=6$ である確率をそれぞれ求めよ。
(2) $S_4=12$ である確率を求めよ。
(3) $S_4=12$ であったとき、$S_2=6$ である確率を求めよ。

【3】
$A$を正の定数とし、$0\leqq\theta\lt 2\pi$において、$\theta$の方程式 $a\sin2\theta-2a^2\cos\theta-\sin\theta+a=0$  …(*) を考える。
(1) $a=1$のとき、(*)を解け。
(2) (*)がちょうど3つの解をもつような$a$の値を求めよ。
(3) (*)がちょうど4つの解をもつとする。4つの解のうち、最小のものを$\alpha$、最大のものを$\beta$とするとき、$\alpha+\beta$の値を求めよ。


【4】
$xy$平面上において、連立不等式 $x\geqq 0,y\geqq 0,x+y\leqq 1$ で表された領域を$D$とする。
(1) 点P($x,y$)が$D$上を動くとき $X=2x-6y,Y=5x+y$ によって定められる点$Q$($X,Y$)が存在する領域を$XY$平面上図示せよ。
(2) $a$を実数の定数とする。点$P$($x,y$)が$D$上を動くとき   $(2x-6y-a)^2+(5x+y)^2$ の最大値を$a$を用いて表せ。


【5】
平面上に直線lとそれに接する半径1の円$C_1$がある。$C_1$の右側にあり、$C_1$と$l$に接する円を$C_2$とする。 $C_n$の中心を$A_n$,半径を$r_n,C_n$と$l$の接点を$B_n$とすると $A_nB_n:A_nA_(n+1)=1:p$ が成り立っている。ただし、$p$は$1\lt p\lt 2$を満たす定数とする。
(1) $r_(n+1)$を$r_n$,$p$を用いて表し、$r_n$求めよ。 また、$Σr_n=3$となるような$p$の値を求めよ。
(2) $p$を(1)で求めた値とする。
(ⅰ) $\ B_nB_{n+1}$を求めよ
(ⅱ) 極限値$\displaystyle\lim_{n\to\infty}{B_1B_n}$を求めよ
(ⅲ) $\alpha=\displaystyle\lim_{n\to\infty}{B_1B_n}$とし、$\beta$を正の定数とする。   極限$\displaystyle\lim_{n\to\infty}(B1Bn-\alpha)\beta n$が0以外の値に収束するよう$\beta$の値と、そのときの極限値を求めよ。


【6】
$a$を正の定数とし、$i$を虚数単位とする。複素数$z$に関する2つの方程式 $z^3=-8i$…①   $z^2-2az+8=0$…②   を考える。
(1) ①を満たす$z$について、$z$の極形式を $z=r(\cos\theta+i\sin\theta)r\gt 0,0\leqq\theta\lt 2\pi$ と表すとき、$r,\theta$の値を求めよ。
(2) ②が異なる2つの虚数解$\alpha,\beta$を持ち、複素数平面上で3点$0,\alpha,\beta$を頂点とする三角形の面積が4であるとする。ただし、($\alpha$の虚部)>($\beta$の虚部)。 (ⅰ) $a$の値と$\alpha,\beta$を求めよ。
(ⅱ)偏角を0以上$2\pi$未満の値で考えるとき,①の解のうち偏角が最大であるものを$γ$とする。複素数平面上で3点$\alpha,\beta,γ^n$を頂点とする三角形の内部に原点が存在するような正の整数$n$を求めよ。
この動画を見る 

#茨城大学(2023) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 2 } \displaystyle \frac{\sqrt{ 2+x }-\sqrt{ 6-x }}{x^2-4}$

出典:2023年茨城大学
この動画を見る 

#茨城大学(2022) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{18}}^{\frac{\pi}{9}} \sin^23x\ dx$

出典:2022年茨城大学
この動画を見る 

大学入試問題#823「置換するかどうか」 #筑波大学(2019) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (x+1)^2e-(x+1) dx$

出典:2019年筑波大学
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)ベクトルの列 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$, ...を条件
$\overrightarrow{a_1}$=(1,0), $\overrightarrow{a_2}$=$\left(\frac{1}{2}, \frac{\sqrt 3}{2}\right)$, $\overrightarrow{a_{n+2}}$=$\displaystyle\frac{\overrightarrow{a_{n+1}}・\overrightarrow{a_n}}{|\overrightarrow{a_n}|^2}\overrightarrow{a_n}$
で定める。このとき$\overrightarrow{a_9}$=$\left(\frac{\boxed{イ}}{\boxed{ウエオ}}, \boxed{カ}\right)$である。また、$|\overrightarrow{a_n}|$<$10^{-25}$を満たす最小の自然数$n$は$\boxed{キク}$である。ただし、必要であれば、$\log_{10}2$=0.301を近似として用いてよい。
この動画を見る 

#茨城大学(2022) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^3} (3x^2+1)log\ x\ dx$

出典:2022年茨城大学
この動画を見る 

#茨城大学(2022) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \cos2x\times\sin\ x\ cos\ x\ dx$

出典:2022年茨城大学
この動画を見る 

大学入試問題#822「これ、積分で出題されるんやー」 #筑波大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int log(x+\sqrt{ x^2+1 }) dx$

出典:2022年筑波大学
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(1)〜無理数の小数第3位の数字と第4位の数字

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$
(1)$\sqrt{13}$を10進法の小数で表したとき小数第3位の数字は$\boxed{\ \ ア\ \ }$、小数第4位の数字は$\boxed{\ \ イ\ \ }$である。ただし、必要であれば$(3.606)^2$=$13.003236$ であることを用いてよい。
この動画を見る 
PAGE TOP