大学入試過去問(数学)
大学入試過去問(数学)
最小値?「あれ」を使いそうな東大の入試問題 #Shorts #ずんだもん #勉強 #数学

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
kを正の実数とし、2次方程式 x²+x-k=0の二つの実数解をα、βとする。kがk>2の範囲を動くとき、α³/(1-β) + β³/(1-α)の最小値を求めよ。
この動画を見る
kを正の実数とし、2次方程式 x²+x-k=0の二つの実数解をα、βとする。kがk>2の範囲を動くとき、α³/(1-β) + β³/(1-α)の最小値を求めよ。
落とせないベクトル!京大でもびびる必要なし!【京都大学】【数学 入試問題】

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形ABCと点Pに対して、次の二つの条件は同値であることを証明せよ。
(i) 点Pは三角形ABCの内部(周は除く)にある
(ii)正の数a,b,cがあって、aPA+bPB+cPC=0が成り立つ。
この動画を見る
三角形ABCと点Pに対して、次の二つの条件は同値であることを証明せよ。
(i) 点Pは三角形ABCの内部(周は除く)にある
(ii)正の数a,b,cがあって、aPA+bPB+cPC=0が成り立つ。
【日本最速解答速報】2025年度東洋大学学校推薦型入試 基礎学力テスト型【数学】

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大学入試解答速報#数学#東洋大学#東洋大学
指導講師:
理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2024年12月1日(日)に実施された、2025年度東洋大学 学校推薦型入試 基礎学力テスト型の数学の解答速報です。
この動画を見る
こちらの動画は、2024年12月1日(日)に実施された、2025年度東洋大学 学校推薦型入試 基礎学力テスト型の数学の解答速報です。
これは超良問の整数問題! #尾道市立大学2023 #整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$x,y$を整数とする
$p=x^3+y^3$と表せる素数$p$を
小さいものから順に4つ求めよ.
2023尾道市立大学後期過去問題
この動画を見る
$x,y$を整数とする
$p=x^3+y^3$と表せる素数$p$を
小さいものから順に4つ求めよ.
2023尾道市立大学後期過去問題
【日本最速解答速報】2025年星薬科大学薬学部薬学科(6年制) 学校推薦型選抜 数学 解答速報【TAKAHASHI名人】

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大学入試解答速報#数学#星薬科大学#星薬科大学
指導講師:
理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2024年11月24日(日)に実施された、2025年星薬科大学薬学部薬学科(6年制)学校推薦型選抜の数学解答速報です。
大学の正解発表ではなく、あくまで当チャンネルの講師が独自に解説をしているものですので、万が一内容に間違いがございましたらご容赦ください。
解説者は理数個別指導学院センター南校のTAKAHASHI名人です。
https://www.youtube.com/playlist?list=PLdLgDY469Qr7UEbDX8OecmSefwQulR35t
この動画を見る
こちらの動画は、2024年11月24日(日)に実施された、2025年星薬科大学薬学部薬学科(6年制)学校推薦型選抜の数学解答速報です。
大学の正解発表ではなく、あくまで当チャンネルの講師が独自に解説をしているものですので、万が一内容に間違いがございましたらご容赦ください。
解説者は理数個別指導学院センター南校のTAKAHASHI名人です。
https://www.youtube.com/playlist?list=PLdLgDY469Qr7UEbDX8OecmSefwQulR35t
相加平均相乗平均の関係を使えそうだけど、どう使う!?京大の証明!どう解く? #Shorts #ずんだもん #勉強 #数学

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
a,b,cを正の数とする。
2((a+b)/2 -√ab)<=3((a+b+c)/3 -³√abc)
を証明せよ。
この動画を見る
a,b,cを正の数とする。
2((a+b)/2 -√ab)<=3((a+b+c)/3 -³√abc)
を証明せよ。
n進法って対策してない人が多いから差がつく!京大の入試問題!どう解く? #Shorts #ずんだもん #勉強

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nを4以上の自然数とする。
2,12,1331がすべてn進法で表記されているとして
2¹²=1331
が成り立っている。このときnはいくつか。十進法で答えよ。
この動画を見る
nを4以上の自然数とする。
2,12,1331がすべてn進法で表記されているとして
2¹²=1331
が成り立っている。このときnはいくつか。十進法で答えよ。
100個の絶対値の合計!?どう解く? #Shorts #ずんだもん #勉強

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nが整数であるとき、S=|n-1|+|n-2|+・・・+|n-100|の最小値を求めよ。
この動画を見る
nが整数であるとき、S=|n-1|+|n-2|+・・・+|n-100|の最小値を求めよ。
大小比較の難問!どう解く?

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
e^πとπ^eの大小を比較せよ。
この動画を見る
e^πとπ^eの大小を比較せよ。
高校2年生から京大に挑戦!積分習いたての人にも解ける問題【京都大学】【数学 入試問題】

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
2x, 5-x, 2のうち最小の数をf(x)とし、g(x)=xf(x)とおく。y=g(x)とx軸で囲まれた部分の面積は?
この動画を見る
2x, 5-x, 2のうち最小の数をf(x)とし、g(x)=xf(x)とおく。y=g(x)とx軸で囲まれた部分の面積は?
福田の数学〜北里大学2024医学部第2問〜関数と不等式の証明

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
(1)関数$y=\frac{1}{x}$の定積分を用いて、$n\geqq 2$を満たすすべての$n$に対して$f(x)\gt 0$が成り立つことを示せ。
(2)$f(x)=x+\frac{x}{1+x}-2\log (1+x)$とおく。すべての正の実数$x$に対して、$f(x)\gt 0$が成り立つことを証明せよ。さらに、すべての正の整数$n$に対して$\frac{1}{n}+\frac{1}{n+1}\gt 2\log (1+\frac{1}{n})$を示せ。
(3)$n\geqq 2$を満たすすべての整数$n$に対して$\displaystyle \sum_{k=1}^n \frac{1}{k}-\frac{1}{2}(1+\frac{1}{n})\gt \log n$が成り立つことを証明せよ。
この動画を見る
(1)関数$y=\frac{1}{x}$の定積分を用いて、$n\geqq 2$を満たすすべての$n$に対して$f(x)\gt 0$が成り立つことを示せ。
(2)$f(x)=x+\frac{x}{1+x}-2\log (1+x)$とおく。すべての正の実数$x$に対して、$f(x)\gt 0$が成り立つことを証明せよ。さらに、すべての正の整数$n$に対して$\frac{1}{n}+\frac{1}{n+1}\gt 2\log (1+\frac{1}{n})$を示せ。
(3)$n\geqq 2$を満たすすべての整数$n$に対して$\displaystyle \sum_{k=1}^n \frac{1}{k}-\frac{1}{2}(1+\frac{1}{n})\gt \log n$が成り立つことを証明せよ。
福田の数学〜北里大学2024医学部第1問(4)〜正の約数の個数と総和

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
2052の正の約数は全部で$\fbox{コ}$個あり、2052の正の約数の総和は$\fbox{サ}$である。また、300以下の正の整数のうち、正の約数の個数が偶数であるものは全部で$\fbox{シ}$個ある。
この動画を見る
2052の正の約数は全部で$\fbox{コ}$個あり、2052の正の約数の総和は$\fbox{サ}$である。また、300以下の正の整数のうち、正の約数の個数が偶数であるものは全部で$\fbox{シ}$個ある。
福田の数学〜北里大学2024医学部第1問(3)〜空間ベクトルと四面体の体積

単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
座標空間に4点A(-1, -1, -1), B(2, 0, 1), C(-2, 2, 0), D(1,0,5)がある。このとき、三角形ABCの面積は キ である。平面ABC上に点Hを直線DHが平面 ABCと垂直になるようにとると、点Hの座標は ク である。また、四面体ABCD の体積は ケ である。
この動画を見る
座標空間に4点A(-1, -1, -1), B(2, 0, 1), C(-2, 2, 0), D(1,0,5)がある。このとき、三角形ABCの面積は キ である。平面ABC上に点Hを直線DHが平面 ABCと垂直になるようにとると、点Hの座標は ク である。また、四面体ABCD の体積は ケ である。
共通テストまであと68日 NG行動とは?

単元:
#大学入試過去問(数学)#物理#化学#生物#センター試験・共通テスト関連#共通テスト#大学入試過去問(物理)#大学入試過去問(化学)#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#大学入試過去問(生物)#共通テスト・センター試験#共通テスト(古文)#共通テスト#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)#共通テスト
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト前のNG行動
この動画を見る
共通テスト前のNG行動
福田の数学〜北里大学2024医学部第1問(2)〜定積分で表された関数の最小値

単元:
#大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
(2) $0\leqq x\leqq 2\pi$において、曲線$y=\sin x$と$x$軸で囲まれた2つの部分の面積の和は$\fbox{エ}$である。
$0\leqq x\leqq 2\pi$において、曲線$y=\sin x$と曲線$y= \cos x$ で囲まれた部分の面積は$\fbox{オ}$である。また、$f(x) =\displaystyle \int_{x}^{ x+\frac{\pi}{2} } |\sin t|dt $とすると、関数$f(x)$の最小値は$\fbox{カ}$である。
この動画を見る
(2) $0\leqq x\leqq 2\pi$において、曲線$y=\sin x$と$x$軸で囲まれた2つの部分の面積の和は$\fbox{エ}$である。
$0\leqq x\leqq 2\pi$において、曲線$y=\sin x$と曲線$y= \cos x$ で囲まれた部分の面積は$\fbox{オ}$である。また、$f(x) =\displaystyle \int_{x}^{ x+\frac{\pi}{2} } |\sin t|dt $とすると、関数$f(x)$の最小値は$\fbox{カ}$である。
【高校化学】少ない暗記量で得点源にする糖類の解説(7)デンプン関連の計算問題をマスターしよう!

単元:
#化学#大学入試過去問(化学)#理科(高校生)#順天堂大学#工学院大学
指導講師:
ぺんぎん高校化学問題集
問題文全文(内容文):
デンプン100gを完全に加水分解すると何gのグルコース得られるか。有効数字2桁で答えよ。(2024 工学院大学)
9.72gのアメロペクチンAのヒドロキシ基をすべてCH₃O⁻(メトキシ基)にした後に希硫酸で完全に加水分解すると,分子量の異なるB, C, Dが得られ,CはDよりも多くのヒドロキシ基を持っていた。それぞれの収量はBが12.25g,Cが0.499g,Dが0.566gであった。なお,図中の①に相当する炭素に結合しているメトキシ基以外は加水分解を受けない。Aはグルコース単位で平均何個ごとに枝分かれするか。(2024 順天堂大学)
この動画を見る
デンプン100gを完全に加水分解すると何gのグルコース得られるか。有効数字2桁で答えよ。(2024 工学院大学)
9.72gのアメロペクチンAのヒドロキシ基をすべてCH₃O⁻(メトキシ基)にした後に希硫酸で完全に加水分解すると,分子量の異なるB, C, Dが得られ,CはDよりも多くのヒドロキシ基を持っていた。それぞれの収量はBが12.25g,Cが0.499g,Dが0.566gであった。なお,図中の①に相当する炭素に結合しているメトキシ基以外は加水分解を受けない。Aはグルコース単位で平均何個ごとに枝分かれするか。(2024 順天堂大学)
共通テスト直前死ぬほど伸びる人の特徴【1.5倍速推奨】

単元:
#大学入試過去問(数学)#物理#化学#生物#センター試験・共通テスト関連#共通テスト#大学入試過去問(物理)#大学入試過去問(化学)#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#大学入試過去問(生物)#共通テスト・センター試験#共通テスト(古文)#共通テスト#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)#共通テスト
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト直前で点数が伸びる人の特徴
この動画を見る
共通テスト直前で点数が伸びる人の特徴
福田の数学〜北里大学2024医学部第1問(1)〜三角関数の最大最小

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
2つの実数x,yは$x^2+y^2 \leqq 4,x \geqq 0 $を満たすとする。このとき、$3x+4y-3$の最小値は$\boxed{ ア }$、最大値は$\boxed{ イ }$である。また、$3x^2+4xy-3y^2$の最大値は$\boxed{ ウ }$である。
この動画を見る
2つの実数x,yは$x^2+y^2 \leqq 4,x \geqq 0 $を満たすとする。このとき、$3x+4y-3$の最小値は$\boxed{ ア }$、最大値は$\boxed{ イ }$である。また、$3x^2+4xy-3y^2$の最大値は$\boxed{ ウ }$である。
福田の数学〜早稲田大学2024社会科学部第3問〜集合と数列

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$n$を$n \geqq 3$である自然数とする。相異なる$n$個の正の数を小さい順に並べた集合$S=${ $a_{ 1 },a_{ 2 }・・・,a_{ n } $}を考える。$a_{ 1 }=k$とするとき、次の問いに答えよ。
(1)$a_{ i }-a_{ 1 }$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ 2 }$を求めよ。
(2)(1)のとき、$a_{ n }$を$n$の式で表せ。
(3)$\frac{a_{ i }}{a_{ 1 }}$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ n }$を$n$の式で表せ。
この動画を見る
$n$を$n \geqq 3$である自然数とする。相異なる$n$個の正の数を小さい順に並べた集合$S=${ $a_{ 1 },a_{ 2 }・・・,a_{ n } $}を考える。$a_{ 1 }=k$とするとき、次の問いに答えよ。
(1)$a_{ i }-a_{ 1 }$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ 2 }$を求めよ。
(2)(1)のとき、$a_{ n }$を$n$の式で表せ。
(3)$\frac{a_{ i }}{a_{ 1 }}$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ n }$を$n$の式で表せ。
福田の数学〜早稲田大学2024商学部第3問〜空間の中の2つの三角形の面積の和の最小値

単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
3 座標空間において、4点をA(0, 0, 2), B(-1, 0, 4), C(1, 1, 0), D(0, 0, 1) とする。次の問いに答えよ。
(1) Pを直線AB上の点とするとき、三角形PCDの面積の最小値を求めよ。
(2) Q,Rを直線 CD上のとし、QR = √3とする。三角形QABの面積と三角形 RAB の面積の和の最小値を求めよ。
この動画を見る
3 座標空間において、4点をA(0, 0, 2), B(-1, 0, 4), C(1, 1, 0), D(0, 0, 1) とする。次の問いに答えよ。
(1) Pを直線AB上の点とするとき、三角形PCDの面積の最小値を求めよ。
(2) Q,Rを直線 CD上のとし、QR = √3とする。三角形QABの面積と三角形 RAB の面積の和の最小値を求めよ。
#電気通信大学2024#極限_72

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \sum_{k=1}^{n} \dfrac{n}{n^2+3k^2}$を解け.
電気通信大学過去問題
この動画を見る
$\displaystyle \lim_{n\to\infty} \displaystyle \sum_{k=1}^{n} \dfrac{n}{n^2+3k^2}$を解け.
電気通信大学過去問題
福田の数学〜早稲田大学2024商学部第2問〜正24角形の頂点を結んでできる四角形の面積と確率

単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#三角関数#加法定理とその応用#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
座標平面において、単位円上の24個の点を${\textrm P}_n(\cos\dfrac{n}{12}\pi,\sin\dfrac{n}{12}\pi)~(n=1,2,3,\cdots,24)$とする。1から24までの番号を付けた24枚のカードから4枚取り出す。取り出したカードの番号を$a,b,c,d$とするとき、点${\textrm P}_a,{\textrm P}_b,{\textrm P}_c,{\textrm P}_d$を頂点とする四角形を$R$とする。四角形$R$の面積の取りうる値を大きい順に$S_1,S_2,S_3$とする。
(1)$S_2$を求めよ。
(2)四角形$R$の面積が$S_3$になる確率を求めよ。
この動画を見る
座標平面において、単位円上の24個の点を${\textrm P}_n(\cos\dfrac{n}{12}\pi,\sin\dfrac{n}{12}\pi)~(n=1,2,3,\cdots,24)$とする。1から24までの番号を付けた24枚のカードから4枚取り出す。取り出したカードの番号を$a,b,c,d$とするとき、点${\textrm P}_a,{\textrm P}_b,{\textrm P}_c,{\textrm P}_d$を頂点とする四角形を$R$とする。四角形$R$の面積の取りうる値を大きい順に$S_1,S_2,S_3$とする。
(1)$S_2$を求めよ。
(2)四角形$R$の面積が$S_3$になる確率を求めよ。
東京大学の整数問題!5つの文字を求める!?どう解く?

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
n,a,b,c,dは0または正の整数であって、
a^2+b^2+c^2+d^2=n^2-6
a+b+c+d≦n
a≧b≧c≧d
を満たすものとする。このような整数の組(n,a,b,c,d)をすべて求めよ。
この動画を見る
n,a,b,c,dは0または正の整数であって、
a^2+b^2+c^2+d^2=n^2-6
a+b+c+d≦n
a≧b≧c≧d
を満たすものとする。このような整数の組(n,a,b,c,d)をすべて求めよ。
福田の数学〜早稲田大学2024商学部第1問(4)〜放物線と2本の接線で囲まれた図形の面積

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
座標平面において、放物線$y=x^2$を$C$とする。点$P(s,t)$から放物線$C$に異なる2本の接線が引け、その接点をそれぞれ$A,B$とする。線分$PA,PB$と放物線$C$で囲まれた図形の面積が$\displaystyle\frac{144}{125}$であるとき$s,t$の満たす方程式は?
この動画を見る
座標平面において、放物線$y=x^2$を$C$とする。点$P(s,t)$から放物線$C$に異なる2本の接線が引け、その接点をそれぞれ$A,B$とする。線分$PA,PB$と放物線$C$で囲まれた図形の面積が$\displaystyle\frac{144}{125}$であるとき$s,t$の満たす方程式は?
【11月勉強法】共通テスト数学爆伸びのために〇〇をやれ

単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学 勉強法
この動画を見る
共通テスト数学 勉強法
福田の数学〜早稲田大学2024商学部第1問(3)〜漸化式

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$C$を$1$でない正の実数とする。正の実数の数列$\{a_n\}$が次の条件を満たしている。
$a_1=C,$${a_n}^{n+1}{a_{n+1}}^n=C^{-(2n+1)}$
このとき、一般項$a_n$を$C$を用いて表せ。
この動画を見る
$C$を$1$でない正の実数とする。正の実数の数列$\{a_n\}$が次の条件を満たしている。
$a_1=C,$${a_n}^{n+1}{a_{n+1}}^n=C^{-(2n+1)}$
このとき、一般項$a_n$を$C$を用いて表せ。
各大学で頻出の典型的な問題!基本的でありながらどの大学でも出題されます【大阪大学】【数学 入試問題】

単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
aを実数とする。曲線y=e^x上の各点における法線のうちで、点p(a,3)を通るものの個数をn(a)とする。n(a)を求めよ。
この動画を見る
aを実数とする。曲線y=e^x上の各点における法線のうちで、点p(a,3)を通るものの個数をn(a)とする。n(a)を求めよ。
福田の数学〜早稲田大学2024商学部第1問(2)〜不等式で決定される自然数の列

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$n$を$2$以上の整数とし、$a_1,a_2,a_3,・・・,a_n$を正の整数とする。
$a_1=1,{a_{i+3}}^3\lt 27{a_i}^4(i=1,2,3,・・・,n-1)$
$\displaystyle \sum_{i=1}^{n-1}\frac{a_i}{a_{i+1}}=\frac{a_1}{a_{2}}+\frac{a_2}{a_{3}}+\frac{a_3}{a_{4}}+・・・+\frac{a_{n-1}}{a_{n}}\lt 1$
であるとき、$a_n$のとりうる値の最大値は?
この動画を見る
$n$を$2$以上の整数とし、$a_1,a_2,a_3,・・・,a_n$を正の整数とする。
$a_1=1,{a_{i+3}}^3\lt 27{a_i}^4(i=1,2,3,・・・,n-1)$
$\displaystyle \sum_{i=1}^{n-1}\frac{a_i}{a_{i+1}}=\frac{a_1}{a_{2}}+\frac{a_2}{a_{3}}+\frac{a_3}{a_{4}}+・・・+\frac{a_{n-1}}{a_{n}}\lt 1$
であるとき、$a_n$のとりうる値の最大値は?
福田の数学〜早稲田大学2024教育学部第3問〜法線上の点の座標と最小値

単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
放物線 $C : y = x ^ 2$ 上に点$P(t, t²)$をとる。$C$の点$P$における法線上に点$Q$を、$PQ=1$ であり、点$Q$の$y$座標が点$P$の$y$座標よりも大きくなるようにとる。 点$Q$の$x$座標を$f(t)$ とおく。次の問いに答えよ。
(1) $f(t)$ を求めよ。
(2) $t$が$0\leqq t$の範囲を動くときの$f(t)$の最小値を求めよ。
この動画を見る
放物線 $C : y = x ^ 2$ 上に点$P(t, t²)$をとる。$C$の点$P$における法線上に点$Q$を、$PQ=1$ であり、点$Q$の$y$座標が点$P$の$y$座標よりも大きくなるようにとる。 点$Q$の$x$座標を$f(t)$ とおく。次の問いに答えよ。
(1) $f(t)$ を求めよ。
(2) $t$が$0\leqq t$の範囲を動くときの$f(t)$の最小値を求めよ。
福田の数学〜早稲田大学2024教育学部第2問〜複素数の集合に関する論証

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$3$つの複素数 $z_1, z_2, z_3$に関する条件$P$を次のように定める。
P: 「$z_1, z_2, z_3$はどれも0ではなく、互いに異なり、かつ$ \{{z_1}^n | n は整数\} = \{{z_2}^n | nは整数\} = \{{z_3}^n |n は整数\}$
である。」
次の問いに答えよ。
(1) $3$つの複素数 $z_1,z_2,z_3$が条件$P$を満たしているとする。このとき$ |z_1| = 1$ であることを示せ。また集合$ \{{z_1}^n | n は整数\}$の要素の個数は有限であることを示せ。
(2) 条件$P$を満たす3つの複素数 $z_1,z_2,z_3$のうち、集合$ \{{z_1}^n | n は整数\}$の要素の個数が最小となるものを考える。このとき集合$ \{{z_1}^n | n は整数\}$を求めよ。
この動画を見る
$3$つの複素数 $z_1, z_2, z_3$に関する条件$P$を次のように定める。
P: 「$z_1, z_2, z_3$はどれも0ではなく、互いに異なり、かつ$ \{{z_1}^n | n は整数\} = \{{z_2}^n | nは整数\} = \{{z_3}^n |n は整数\}$
である。」
次の問いに答えよ。
(1) $3$つの複素数 $z_1,z_2,z_3$が条件$P$を満たしているとする。このとき$ |z_1| = 1$ であることを示せ。また集合$ \{{z_1}^n | n は整数\}$の要素の個数は有限であることを示せ。
(2) 条件$P$を満たす3つの複素数 $z_1,z_2,z_3$のうち、集合$ \{{z_1}^n | n は整数\}$の要素の個数が最小となるものを考える。このとき集合$ \{{z_1}^n | n は整数\}$を求めよ。
